

Figure by MIT OCW.

B. COMMENTS ON CELL DISRUPTION BY LIQUID SHEAR

• Ultrasound: Sonication

Advantages:

- Efficient (~ 95% Disruption)
- Rapid (Seconds to Minutes)
- Effective Against Many Organisms
- Simple to Operate
- Small Volumes (Milliliters)
- Ease of Containment (No Moving Parts)

- Large Amount of Heat Generated
- Laboratory Usage (Not Scaleable)
- Low Cell Concentration

High Speed Disks:

Advantages:

- High Disruption Efficiency
- Moderate Cell Concentration
- Available in Different Sizes

Disadvantages:

- Heat Generation
- Difficult for Containment
- Safety Issues: High Speed Rotating Disks

French Press:

Advantages:

- Easy to Use
- Small Samples
- Moderate
 Concentrations

- Not Effective for All Cells
- 2.Small Samples
- 3.Laboratory Tool

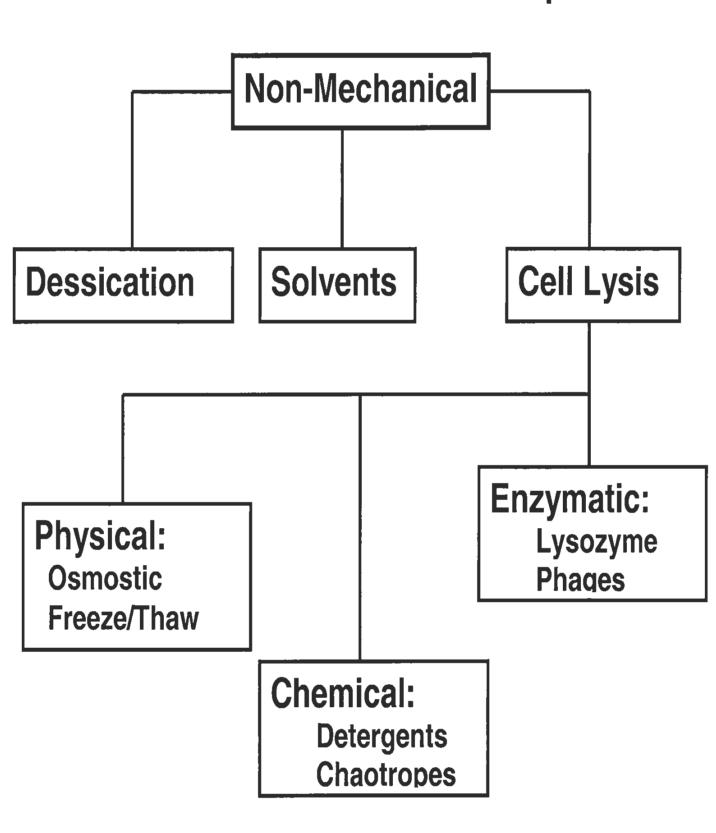
Pressure: Homogenization:

Advantages:

- High to Reasonable Efficiencies Using Multiple Passes
- Effective Against Multiple Organisms
- Moderate Cell Concentrations
- Excellent on Scale-Up: Definable Scale-Up Parameters
- Reasonably Simple to Operate
- Continuous Operations
- Capable of Large Volume Operations

- High Pressures Needed
- Liquid Leakage: High Pressure Seals
- Multiple Passages for High Efficiency
- Containment Difficulties: Seal Leaks
- Moderate to Low Cell Concentrations
- High Viscosity: Release of DNA
- Maintenance: Erosion of Valve

C. COMMENTS ON CELL DISRUPTION BY SOLID SHEAR


Grinding: Dyno Mill:

Advantages:

- High Disruption Efficiency
- Effective Against Multiple Organisms
- Low Pressure: Ease of Containment
- High Cell Concentrations:
 - Slurries up to 500 Grams/Liter
- Continuous and Batch Operations
- Available in Various Sizes
- Definable Scale-Up Parameters
- Low Maintenance: No High Pressure Seals, Minimal Number of Moving Parts

- Attrition of Beads
- Contaminating Products
- ❖ Parts and Service: European → USA

D. Non-Mechanical Cell Disruption

E. COMMENTS ON CELL DISRUPTION BY NONMECHANICAL METHODS

Dessication:

- Reasonably Simple
- Effective for Large Samples: e.g. Yeast and Vegetable Extracts
- Additional Process Steps Needed: Cell Concentration, Dehydration
- Not Always Effective Against All Cells
- Difficult to Predict Performances

Solvents:

- Organic Solvents: Hexane, Benzene
- Effective to Permeabilize Cell Membrane
- Used Frequently in Cell-Free Systems
- Toxicity of Solvent
- Potential Damages to Proteins
- EPA and OSHA Considerations

Physical: Osmostic Shock:

Concept:

- Inducing a Rapid Change in Salt Concentration
- Types of Salt: NaCl, Glycerol, Sucrose
- Disrupting Cell Wall to Release Intracellular Contents

Advantages

- Reasonably Simple
- No Complex Equipment
- Operate at Low Temperatures
- Does Not Effect Protein Structure
- Effective Against Animal Cells and Red Blood Cells

- Not Always Effective Against Microorganisms
- Introduction of High Salt Concentration and Subsequent Removal is Necessary

• Freeze/Thaw:

Concept:

- Freezing Cell Paste and Followed by Thawing
- Permeabilizes Cell Wall
- Intracellular Contents Released Upon Thawing

Advantages:

- Cell Paste Can be Handled in Aseptic System
- Ideal Way to Schedule Timing to Hold Product
- Relatively Simple and Convenient
- Relatively Mild Method
- Able to Handle Large Samples

- Not Always Effective Against All Microorganisms
- Protein Release Efficiency Organism Dependent