12.806 / 10.571 Atmospheric Physics & Chemistry

Spring 2006

R. Prinn & G. McRae Thursday, 2:30–4:00 PM

12.806 / 10.571 Atmospheric Physics & Chemistry

Course Outline: Spring 2006

Tuesday and Thursday, 2:30-4:00 PM

	FEB 7	Introduction, properties of the atmosphere	(Prinn, McRae)
	9	Combustion sources of stoichiometry	(McRae)
	14	Chemical thermodynamics / kinetics	(McRae)(Prinn out)
	16	Radiative transfer and photochemistry	(McRae)
	21	Tropospheric chemistry: CO	(McRae)
	23	Tropospheric chemistry: NOx and Ozone	(McRae)
1	28	Tropospheric chemistry: HCHO and Ozone	(McRae)
4	MAR 2	Tropospheric chemistry: Complex Hydrocarbons	(McRae)
	7	Atmospheric chemistry and transport: continuity equation	(Prinn)
	9	Atmospheric chemical transport models: continuity equation (cont'	d) (Prinn)
4	14	Atmospheric chemical transport models: basic structures	(Prinn)
	16	Tropospheric chemistry: Homogeneous processes	(McRae)
1	21	Tropospheric chemistry: Homogeneous processes	(McRae)(Prinn out)
	23	Tropospheric chemistry: Heterogeneous processes	(McRae)(Prinn out)
	27-31	Spring Break	
	APR 4	Air Pollution Controls	(McRae)(Prinn out)
	6	Air Pollution Controls	(McRae)(Prinn out)
Ų	11	Integrated Assessment of Air Pollution	(McRae)
X	13	Atmospheric chemical transport models: numerical integration	(Prinn)
	20	Incorporating chemical and physical processes in models	(Prinn)
7	25	Atmospheric chemical transport models: examples	(Prinn)
	27	Atmospheric chemical transport models: examples	(Prinn)
		[Take-home exam distributed]	
	MAY 2	Atmospheric chemistry: measurement systems and estimation	(Prinn)
	4	Inverse Methods in Atmospheric Chemistry: optimal estimation	(Prinn)
	9	Inverse Methods in Atmospheric Chemistry: statistical methods [Take-home exam due]	(Prinn)
	11	Inverse Methods in Atmospheric Chemistry: examples	(Prinn)
	16	Inverse Methods in Atmospheric Chemistry: examples	(Prinn)
	18	Inverse Methods in Atmospheric Chemistry: examples	(Prinn)

12.806 / 10.571 Atmospheric Physics & Chemistry Course Outline: Page 2

Problem sets (50% of grade) plus Take-home exam in final 2 weeks (50% of grade)

Faculty: Prof. G. McRae

Prof. R. Prinn

Teaching Assistant: Alex Lewis

Recommended Textbook [* indicates book on reserve at Lindgren Library]

*Seinfeld, J.H., and S.N. Pandis, Atmospheric Chemistry and Physics (J. Wiley & Sons)

ATMOSPHERIC PHYSICS & CHEMISTRY

Interactions Between Air Pollution and Climate

INTEGRATED ASSESSMENT: MIT Integrated Global System Model (IGSM)

GDP growth, energy use, policy costs, agriculture and health impacts...

global mean and latitudinal temperature and precipitation, sea level rise, sea-ice cover, greenhouse gas concentrations, air pollution levels...

soil and vegetative C, net primary productivity, trace gas emissions from ecosystems, permafrost area...

