
 
One-Dimensional (Vertical) Chemistry-Transport Model
 
Take horizontal average of equation (5) and denote horizontal average with overbar and 
deviation from horizontal average with a prime: 
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*eddy diffusion approximation: 

 
Consider case when loss only: 
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For brevity drop subscripts i and overbars and assume zK K=  is independent of altitude 
and temperature is constant: 
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General solution is: 
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Determine A and B from boundary conditions.  Say X  0 as z  ∞ , then  and A 0=

( )X X 0=  at z = 0 is given so ( )B X 0= .  Thus specific solution is: 
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Consider two cases: 
 

(a)  
24H
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i.e. (vertical transport time) (chemical lifetime) 
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Example: surface source and stratospheric sink (such as , , , etc.)  2N O 3CFCl 2 2CF Cl
 

 
Coupled Chemistry-Transport 3D Models 

 
1. Basic Equations 
 
Want to solve the 3D Eulerian continuity equation as an initial value problem: 
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subject to upper and lower boundary conditions.  But do not know V  as continuous 
function of space and time.  Thus express the flux as the sum of “mean advective” and 
“eddy diffusive” parts: 
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where  denotes time and/or space average, ( ) '  denotes deviation from , and  is 
a 3x3 matrix containing “eddy diffusion” (or “turbulent exchange”) coefficients.  The 
average winds 

K

V  can be obtained in principle from general circulation models (gcm’s), 
observations, or gcm’s “corrected” through assimilation of observations (“forecast” or 
“analyzed observed” winds).  In this case V  are Eulerian averages appropriate to the 
grid spacing and time step in the g.c.m. and refers to unresolved “sub-grid-scale” K



winds.   may be determined by empirical (e.g. fitting observed K [ ]i ), semi-empirical, or 
theoretical approaches.  The latter two approaches involve so-called “parameterizations.” 
 
2.  Prognostic and diagnostic continuity equations 
It is not usually necessary to consider transport of all chemical species.  Consider the 
prognostic (time dependent) continuity equation in mixing ratio form: 
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The diagnostic equation is much faster to solve. 
 
Chemical families: 

iτ transport time (for loss by conversion of one family member to another) 

iτ ≥ transport time (for loss of overall family) 
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Without chemical families and diagnostic equations, atmospheric chemical models are 
invariably “stiff” systems.  Specifically if X  is a vector of chemical mixing ratios  and iX
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3. Spatial representations 

a. Finite difference schemes (truncated Taylor expansion at J grid-points) 
b. Spectral techniques (express variables using truncated series of N orthogonal 

harmonic functions and solve for N coefficients of expansion;) see 
c. Interpolation schemes (interpolates between grid points e.g. using a polynomial) 
d. Finite element schemes (minimizes error between actual and approximate 

solutions using a “basis function”, good for irregular geometries, c.f. (b) above 
which is good for regular geometries) 

 
4.  Explicit and Implicit time stepping 
Explicit:  ( ) ( )t t t
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(Implicit methods more stable (but often less accurate) than explicit methods for longer 
time steps) 
 




