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5.04, Principles of Inorganic Chemistry II 
Prof. Daniel G. Nocera 

Lecture 9: Band Theory in Solids 

The LCAO method for cyclic systems provides a convenient starting point for the 
development of the electronic structure of solids. 

At very large N, as the circumference of the circle approaches ∞, the cyclic problem 
converges to a linear one, 

∞


Qualitatively, from a MO energy level perspective, 

∞


5.04, Principles of Inorganic Chemistry II Lecture 9 
Prof. Daniel G. Nocera Page 1 of 10 



More quantitatively, in moving from cyclic to linear systems, instead of describing 
orbital (atom) positions angularly, the position of an atom is described by ma, 
where m is the number of the atom in the array and a is the distance between 
atoms. Thus, the θ of the N-cyclic derivation becomes ma, 

ψk = ∑ eik(ma)φmψ j = ∑ ei jθφm

m
 m 

Ej = α + 2β cos 
2π j 

Ek = α + 2β cos 
2π ja 

multiplied by a/aN Na 

= α + 2β coska 

2π j
where k= 

Na 

A few words about k. It is: 

a measure of the number of nodes 

an index of wavefunction and accordingly symmetry of wavefunction 

a “quantum number” for a given ψk 

a measure of length, related to wavelength λ–1 

from DeBroglie’s relation,  λ = h 
, therefore k is also a wave vector that 

measures momentum p 

Returning to the foregoing discussion, note that k parametrically depends on a. 
Since a is a lattice parameter of the unit cell, there are as many k’s as there are 
unit cells in the crystal. In the linear case, the unit cell is the distance between 
adjacent atoms: there are n atoms ∴ n unit cells or in other terms – there are as 
many k’s as atoms in the 1-D chain. 

π
Let’s determine the energy values of limits, k = 0 and k = : 

a 

at k = 0: ψ 0 = ∑ ei0(ma)φm = ∑φm 
m m 

π i ⎜
⎜
⎛ π 
a ⎟
⎟
⎞ 
(ma) 

at k = : ψ π = ∑ e ⎝ ⎠ φm = ∑ eimπφm = ∑ (−1)mφm a n m ma 
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The energies for these band structures at the limits of k are: 

E0 = α + 2β cos(0)a = α + 2β 

Eπ = α + 2β cos(
π 

)a = α − 2β 
a
 a 

Note that k is quantized; so there are a finite number of values between α+2β and 
α–2β but for a very large number (~1023 atoms) between the limits of k. Thus, the 
energy is a continuous and smoothly varying function between these limits. 

π π π
kThe range − ≤ k ≤ or ≤  is unique because the function repeats itself 

a a a 
outside these limits. This unique range of k values is called the Brillouin zone. The 

π π
first Brillouin zone is plotted above from 0 to  (symmetric reflection from −  to 

a a 
0). 

With a given number of e–s in the solid, the levels will be filled to a certain energy 

called the Fermi level, which corresponds to a certain value of k (= kF). In the 

k
above example, there are more electrons than there are orbitals, so kF >    . If 

2a π
each atomic orbital contributed 1e– to the system, then EF would occur for kF = .

2a 
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The symmetry of the individual atomic orbitals determines much about band 
structure. Consider p-orbitals overlapping in a linear array (vs the 1s orbitals of the 
above treatment). Analyzing limiting forms: 

at k = 0: ψ0 = φ1  + φ2 + φ3  + φ4 + …

NOTE: This is the highest 
+ … energy orbital with N nodes 

π
at k = : ψ π = φ1 − φ2 + φ3 − φ4  + … 

a 
a 

NOTE: Lowest energy 
+ … orbital with N nodes 

The energy band is opposite of that for the sσ orbital LCAO because the (+) LCAO for 
a pσ orbital is antibonding. 

Thus, molecules are easily related to solids via Hückel theory. Not surprisingly, 
there is a language of chemistry describing the electronic structure of molecules 
that is related to the language of physics describing the electronic structure of 
solids. Below are some of the terms that chemists and physicists use to describe 
similar phenomena in molecules and solids: 
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 LCAO–MO tight-binding model 

molecular orbital crystal or band orbital 


Jahn–Teller distortion Peierls distortion

high or intermediate spin magnetic 


low spin non magnetic 


Band Width or Dispersion 

What determines the width or dispersion of a band? As for the HOMO-LUMO gap in 
a molecule, the overlap of neighboring orbitals determines the energy dispersion of 
a band – the greater the overlap, the greater the dispersion. Note how the band 
dispersion of a linear chain of H atoms varies as the 1s orbitals of the H atoms are 
spaced 1, 2, 3 Å apart (E of an isolated H atom is –13.6 eV): 
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Density of States 

The total energy of the system is, normalization constant 

Etotal = N
2π 
a
 

∫ − 
k
k
F

F 
2E(k)dk = 2N 

π 
a
 

∫0
kF E(k)dk 

or in other words, it is the area under the curve to kF. Another useful quantity is the 
number of orbitals between E(k) + dE(k), called the density of states (DOS). For 
a 1-D system, 

inversely proportional to slope 
DOS ⎛ ⎞

−1 of E(k) curve at given k. Since 
n(E(k)) ∝ ⎜

⎝
⎜ ∂

∂ 
E(
k
k) 

⎟
⎠
⎟ slope at k = 0 and k = π/a 

approaches 0, n(E(k)) is large 

A plot of the above equations is, 

DOS 

In the above DOS diagram, no energy gap separates the filled and empty bands, i.e. 
there is a continuous density of states – this property is characteristic of a metal. If 
an energy gap between filled and empty orbitals is present and it can be thermally 
surmounted, then it is semiconductor; an energy gap that cannot be surmounted 
is an insulator. 

A 1-D Example 

Arguably the best known 1-D system in inorganic chemistry is K2Pt(CN)4 and its 
partially oxidized compound (e.g. K2Pt(CN)4Br0.3). 
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Normal platinocyanide, K2Pt(CN)4: 

an insulator, pale 
yellow compound 

Partially oxidized platinocyanide, K2Pt(CN)4Br0.3•3H2O: 

along chain: a conductor (500-1000 Ω–1 

cm–1) a copper-colored with metallic luster 

⊥ to chain: an insulator (0.05-0.01 Ω–1 

cm–1), a yellow compound 

Note: d(Pt-Pt) = 2.78 Å in Pt metal 

To explain these disparate properties of the 1-D compounds, consider the molecular 
subunit Pt(CN)4

2-: 

for d8 system valence bonds 
completely filled … the energy 
gap between the M-Lσ derived 
valence band and the M-Lσ* 
derived conduction band is too 
large to be thermally populated, 
thus an insulator 
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The dispersion of the bands is due to the different overlaps of the dσ, dπ and dδ orbitals. 

Band structure (or first Brillouin zones) derived from the frontier MO’s is: 

For partially oxidized system, the σ bond derived from dz2 should be partially filled and thus 
metallic, but it is not, partially oxidized K2Pt(CN)4Brx is a semiconductor. To explain this 
anomaly, consider how the band structure is perturbed upon partial oxidation: 
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Isolating on the dz2 band in K2Pt(CN)4, the Pt atoms are evenly spaced with lattice 
dimension a (I). Upon oxidation, the Pt chain can distort to give a lattice dimension 
2a (II). In the case of the K2Pt(CN)4Br0.3 •3H2O the distortion is a rotation of Pt 
subunits and formation of dimers within chain, thus the unit cell dimension is 
pinned to every other Pt atom. 

For K2Pt(CN)4 (I): 

For K2Pt(CN)4Br0.3• 3H2O (II): 

Thus Brillouin diagram distorts Color code red: for 
partially occupied dz

2 

band with no distortion 

boundary condition 
for K2Pt(CN)4 

boundary condition for 
Color code aqua marine: 
for partially occupied dz

2 
K2Pt(CN)4Br0.3 •3H2O 

band with distortion 

or pictorially… 
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The Brillouin diagram above is for a 
distorted K2Pt(CN)4 but filled dz2 

orbital. Hence both aqua marine 
bands are filled and the material 
that thus possesses the electronic 
structure shown below is insulating, 
despite the distortion 

Upon partial oxidation of K2Pt(CN)4 

to produce K2Pt(CN)4Br0.3• 3H2O, the 
dz2 band is now partially filled. Hence 
a conductive material results. The 
conductivity is along the Pt-Pt axis, 
explaining the electrical anisotropy 
of the material 
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