
The Discrete Fourier Transform and Its Use 

5.35.01 Fall 2011
 

22 September 2011 

Contents 

1 Motivation 1
 

2 The Continuous Fourier Transform 4
 
2.1 A Brief Introduction to Linear Algebra . . . . . . . . . . . . . . . 4
 
2.2 The Wave Formulation of the Fourier Transform . . . . . . . . . 4
 

3 The Discrete Fourier Transform (DFT) 6
 
3.1 An Efficient Algorithm Exists . . . . . . . . . . . . . . . . . . . . 6
 

4 Using the FFT in Matlab 7
 
4.1 A Mixture of Sinusoids . . . . . . . . . . . . . . . . . . . . . . . . 9
 
4.2 A Finite-Length Pulse . . . . . . . . . . . . . . . . . . . . . . . . 12
 

5 Conclusions and Further Directions 13
 

1 Motivation 

In physics and engineering, we frequently encounter signals–that is, continuous 
streams of data with a fixed sampling rate–representing some information of 
interest. For example, consider the waves generated by an AM or FM trans­
mitter, the crashing of waves on a beach, a piece of music, or raindrops hitting 
the ground. In each case, we can define some event to monitor, such as the 
number of raindrops hitting a certain region, and record that data over time. 
But just having this data does not tell us much, because we are not used to 
unraveling such complicated and seemingly noisy patterns. For example, below 
is the waveform (signal intensity, 44.1kHz sampling) of an excerpt from a song: 
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At first glance, we can see that some patterns emerge. For example, there 
appears to be a strong signal every few thousand samples with more complicated 
details in between, but beyond that we cannot easily say much about this signal. 
But what if we can reduce these data to something more managable, such as 
the rhythm of each instrument? Certainly, we could sit and listen to the music 
to discern which instruments play at which frequency if we want to recreate 
the song, but this requires significant time and effort by a dedicated observer. 
What if we want to automate the process for practical reasons, such as voice 
transcription or song identification? In this case, we would need to establish an 
automated, well-characterized method for analyzing the signal. 

One such tool is the Fourier transform, which converts a signal varying in 
time, space, or any other dimension into one varying in a conjugate dimension. 
For example, a time-varying signal may be converted into a signal varying in 
frequency, such that we are able to view monochromatic time oscillations as 
single peaks in the frequency signal. Applied to our comlex music waveform, we 
see: 
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Suddenly, we start seeing that a few key rhythms and instruments are present 
in our clip, as represented by the tallest peaks. Instead of worrying about the 
whole signal, we can focus our attention on just the most promienent contribu­
tors to the signal, allowing us to address practically these signals, rather than 
wallowing in a vast sea of numbers. 

But what about applications to physical chemistry? We mentioned earlier 
the concept of interferometry, the technique of examining the intensity of a signal 
at various points in space as a method for determining the spatial frequencies 
present in the incoming light, and therefore the temporal frequencies. This is 
mathematically no different from the clip of music: we sample the intensity at 
different positions, plot the signal, and use a Fourier transform to discern the 
contribution of each frequency of light. The result is a spectrum of frequencies 
(or wavelengths, depending on which way we prefer to label the horizontal axis), 
which is then available for interpretation using the laws of physics. The two 
situations are very different, yet both can be viewed in a sufficiently similar 
way that the mathematics governing the behavior of the two systems becomes 
identical. The recognition of these isomorphisms in the structure of physical and 
mathematical phenomena revolutionizes science and technology, because they 
permit us to solve many problems using identical techniques, meaning that the 
work put into understanding a technique in one context suddenly pays off in all 
fields. 
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2 The Continuous Fourier Transform 

2.1 A Brief Introduction to Linear Algebra 

Before delving into the mechanics of the Fourier transform as implemented on 
a computer, it is important to see the origin of the technique and how it is 
constructed. Therefore, we will start with the continuous Fourier transform, 
seek an understanding of its structure, and exploit that understanding to see 
how we might transform discrete signals, as nearly all real data are. 

To begin with, recall the concept of a vector. We typically encounter such 
structures as arrows in Euclidean space which are endowed with direction and 
magnitude, and we consider two vectors equal when these two properties are 
the same for each. You may also be familiar with the idea that a vector in space 
can be expressed as the sum of other vectors, such as the î, ĵ, and k̂ vectors, 
representing the x, y, and z axes, respectively. These vectors are orthonormal, 
that is, each has a magnitude of 1 and sits at a right angle (is orthogonal) to 
the others. So, together they form what we call an orthonormal basis set, which 
means that all vectors in this three-dimensional space can be expressed as some 
linear combination of the basis vectors. More concisely, for basic vectors ej, 
constant coefficients cj , and some vector v in an N -dimensional vector space 
spanned by {ej}: 

NN 
v = cj ej (1) 

j=1 

With a bit of math, we can define some fundamental behavior for abstract 
vectors and vector spaces, including the abstract idea of an inner product, which 
you may know as a dot product. Briefly, an inner product acts a measure 
of the spatial overlap of two vectors, and therefore can be used as a test for 
orthogonality. The inner product of a vector with itself gives the magntitude of 
the vector squared, and so we can express any vector for some basic {ej } as: 

NN v · ej
v = ej (2) 

ej · ejj=1 

So, for any vector in a finite vector space, we have a method for expressing the 
vector as a sum over any basis, meaning that we are free to choose one which is 
convenient to work with. For continuous vector spaces we must be a little more 
careful with out definitions, but the basic ideas still hold. 

2.2 The Wave Formulation of the Fourier Transform 

Recall the Fourier series, which expresses an integrable function with period 2π 
as a sum of sinusoidal functions: 

∞Na0
f(t) = + aj cos (jt) + bj sin (jt) (3)

2 
j=1 
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We can view the various sinusoids and the constant coefficient as vectors, and 
define the inner product as an integral over the period (with a constant factor 
for normalization):  π1 

f(t) · g(t) = f(t)g(t)dt (4)
π −π 

Under this operation, we can see that each sine, cosine, and the constant are 
mutually orthogonal, and with a bit more work we can prove that they span all 
integrable periodic functions. Perhaps more importantly, this method allows us 
a simple way to compute the expansion of the function on the basic set, freeing 
us to note the contribution of each frequency. Building on this, the extension 
to an arbitrary integrable function involves the relaxation of the restriction of 
periodicity and allow any wave frequency in our basis set. The basic structure 
of the space has changed somewhat, but the inner product we defined holds 
if we extend the limits to be infinite and introduce a factor to correct for vol­

1ume . Therefore, for f(t) to be expressed as a sum of waves with frequencies 
ω and coefficients F (ω), the projection of f(t) onto the wave basis set will look 
something like:  ∞1 

F (ω) = √ f(t) cos (ωt)dt (5)
2π −∞ 

But, this is not quite complete, as we need to consider functions which are not 
at their maximum at t = 0. So, we could write a similar expression for sin (ωt), 
or we could be more clever. 

Consider the complex numbers, which we can express in a number of equiv­
alent ways: 

iθ z = a + ib = |z|e = |z| cos (θ) + i|z| sin (θ) (6) 

So, what if we recast our view of waves in light of this? We can express compactly 
the idea of a wave propagating along an axis by viewing the wave as extending 
onto the complex axis, as a sort of helix of fixed diameter which coils around the 
axis of propagation. Since (in most real-world examples) our original wave is a 
real function, we can just take the real part of this wave function, which, with 
complex coefficients allowed, becomes some sum of sine and cosine functions, 
leading to the phase offset we were originally seeking. So, we can express the 
more complete transform:  ∞1 −iωtdtF (ω) = √ f(t)e (7)

2π −∞ 

where we allow F (ω) to take on complex values, to account for this phase shift2 . 
We can also invert this expression:  ∞1 iωtdtf(t) = √ F (ω)e (8)

2π −∞ 

This we call the Fourier transform and its inverse. 
1This is related to the conversion between units in the transform, from angular frequency 

to regular frequency. 
2Re ((a + ib)eiωt) = Re ((a + ib) cos (ωt) + (ia − b) sin (ωt)) = a cos (ωt) − b sin (ωt) 
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3 The Discrete Fourier Transform (DFT) 

The continuous Fourier transform is itself a great feat of mathematics, and an 
enormous number of interesting problems can be expressed and solved efficiently 
in this form. However, there is one problem: while we can work on continuous 
intervals without issue in mathematics, the real world tends to be a little more 
discrete. We cannot really have π apples on the table, unless you are the sort of 
person who likes to work in unusual bases, and likewise the clock mechanisms in 
timepieces and computers count using some division of seconds. Similarly, com­
puter memory is divided into discrete blocks, and we store our streams of data 
using these discrete blocks. In such a world, it becomes highly impractical to 
think about varying continuously over frequencies, but what if we instead some­
how choose only a limited number of frequencies, such that we can approximate 
the true result in a way which balances practicality and accuracy? 

3.1 An Efficient Algorithm Exists 

The good news is, we can. An algorithm for computing the Fourier transform of 
a discrete function (the discrete Fourier transform or DFT) efficiently does exist, 
and exploits the mathematical structure of the polynomials, which can also be 
viewed using the linear algebra framework we used. Using certain tricks, the fast 
Fourier transform (FFT) can be used to calculate the DFT much more rapidly, 
with the running time required being O(n ln (n)) instead of O(n2), where n is 
the signal length and O represents the way the running time of the operation 
scales with the paramater n. What this means is that doubling the signal only 
slightly more than doubles the time needed to compute the transform, rather 
than quadrupling it, and so we are able to work with rather large signals in a 
more reasonable length of time. 

The details of the FFT are far too gory to be spelled out here, but the ba­
sic idea is that we can express the inner product of each reference frequency 

iωt).with the signal as a sum over complex divisions of unity (e These prod­
ucts can in turn be expressed as a matrix product of with the signal vec­
tor, meaning our problem becomes a matter of efficiently multiplying a ma­
trix with a vector. This can be broken down into subproblems by quartering 
the matrix repeatedly, which is how we achieve the reduction to O(n ln (n)) 
growth. A full derivation of the method can be found in any good book on 
algorithm design. See, for example, chapter 30 of the second edition of Car­
men, Leiserson, Rivest, and Stein’s Introduction to Algorithms. Weisstein gives 
a rather technical overview of the mathematics of the algorithm on his web-
site at http://mathworld.wolfram.com/FastFourierTransform.html, with 
plenty of references to more complete manuscripts on the subject. To see 
how the algorithm is implemented on a computer, the GNU Scientific Library 
(http://www.gnu.org/software/gsl/) is open-source and includes a few dif­
ferent FFT algorithms. 
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4 Using the FFT in Matlab 

Now that we have seen a bit of where the Fourier transform comes from and have 
satisfied ourselves that an efficient method for computing the DFT of a signal 
exists, we can exploit our knowledge for practical gain. Normally, this would 
require that we actually sit down and program a computer to execute the FFT, 
but the good folks writing mathematics packages such as Matlab, Mathematica, 
the GNU Scientific Library, and countless others have already done this for us. 
As a result, any numerical analysis package worth using should include this 
function, but today we will be using Matlab. 

Why Matlab? For one, Matlab acts as a friendly interface to the numerical 
workhorse that is Fortran. Another good reason is that MIT pays for us to 
have a license to use the software, and so we might as well use something that is 
well-written, has a nice enough interface, and costs nothing to use (at least until 
graduation). There are alternatives from the open source community which are 
free regardless of who you are (GSL, for one), but most of these require a little 
more computing expertise than is practical for this class3 . In short, Matlab 
provides us the most power for the least effort required to understand how a 
computer works, leaving us free to worry more about our methods than their 
low-level implementation. 

So, how do we use Matlab? There are a number of texts on this subject, 
including Mathwork’s tutorial on their product and dozens of “Matlab for x” 
textbooks, where x is your field of study. So, here we will cover only the most 
important aspects of the operation of the software. 

The first step is to download and install Matlab, following the directions 
available at http://ist.mit.edu/services/software/math/tools. Packages 
are available for Windows, Macintosh, and Linux, all of which have somewhat 
different interfaces and commands shortcuts. However, the basic functionality 
of the package remains the same, so we will talk mostly about the Matlab 
commands of interest. 

Once you install and run the package, you should be greeted with an in­
terpreter with all sorts of subwindows. The one we care about most is in the 
center, as this is our command line interface to the Matlab engine. We will 
enter our commands and see results here when working interactively, and when 
running scripts and errors or results will also be displayed here. 

Matlab’s data structure is the array, which can have essentially any number 
of dimensions, limited by the memory in your computer. We fill this array with 
a single data type, such as 32-bit integers or floating-point numbers, and can 
access the elements by choosing the appropriate indices. We can even use a nice 
shorthand to create certain types of arrays: 

3If you find that you are interested in physical chemistry more than just as a hobby, it 
would be wise to acquire a working knowledge of computer science fundamentals, such as 
those taught in Abelson and Sussman’s Structure and Interpretation of Computer Programs, 
as well as a solid understanding of algorithmic design. Even if you never end up writing much 
code yourself, the discipline necessary to understand the analysis will prove highly useful in 
experimental design. 
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>> 1:10 
ans = 

1 2 3 4 5 6 7 8 9 10 

In the array above, we created an array of ascending numbers, by default sepa­
rated by 1. We can also change the spacing of the array elements by inserting 
a third term: 

>> 1:0.5:3 
ans = 

1.0000 1.5000 2.0000 2.5000 3.0000 

Notice that we now have an array of floating-point numbers, rather than inte­
gers. The representation of floating point numbers on a computer is approxi­
mate, so when performing calculations we must make sure that the precision of 
the representation (32-bit, 64-bit, etc) is sufficient for our needs4 . In this case 
we are happy with just a few significant figures, so the standard 32-bit floating 
point number is adequate. 

Now that we can create arrays, we can store and address them (a semicolon 
suppresses the output of a command): 

>> a = 1:10; 
>> a(2:5) 
ans = 

2 3 4 5 

We can even create multidimensional arrays and address each dimension sepa­
rately: 

>> a = rand(3,3) 
a = 

0.9649 0.9572 0.1419 
0.1576 0.4854 0.4218 
0.9706 0.8003 0.9157 

>> a(:,3) 
ans = 

0.1419 
0.4218 
0.9157 

Here, the : is used as shorthand for the whole dimension. So, we have asked 
Matlab for every row of the third column, but we could easily mix and match 
the indices to get the exact window desired. 

The real strength of Matlab is that it contains some high-quality algorithms 
for calculating quantities of great interest to us. For example, we can rapidly 

4If you will ever have to work with computers in anything more than a passive capac­
ity, learn about machine structures and their implications. Knowing the limitations of your 
instruments is absolutely essential to performing good experimental work. 
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calculate the eigenvalues and eigenvectors of large matrices, take Fourier trans­
forms of long signals, perform statistical analysis of large data sets, make plots 
of thousands of data points, and so on. The breadth of what Matlab can do is 
documented in the manual for the package, although many books also exist to 
introduce a reader to some of the most relevant commands. For now, let us turn 
our attention to a simple script for taking a Fourier transform and plotting it. 

4.1 A Mixture of Sinusoids 

Here is a brief script to compute a signal, take its Fourier transform, and then 
invert the transform to show that we recover the original signal: 

Fs = 1000; % frequency of sampling
 
T = 1/Fs; % sample time
 
L = 1000; % length of sampling
 
t = (0:L-1)*T;
 

% mix up the signal
 
frequencies = [1, 120; 0.7, 100; 0.9, 60];
 
data = frequencies(:,1)’*sin(2*pi*frequencies(:,2)*t);
 

data = data + 0.5*(1-2*rand(1,L));
 

subplot(3,1,1);
 
plot(Fs*t,data);
 
xlabel(’t/ms’);
 
ylabel(’intensity’);
 

NFFT = 2^nextpow2(L);
 
Y = fft(data, NFFT)/L;
 
f = Fs/2*linspace(0,1,NFFT/2+1);
 

subplot(3,1,2);
 
plot(f,2*abs(Y(1:NFFT/2+1)));
 
xlabel(’frequency/Hz’);
 
ylabel(’|F(\omega)|’);
 

subplot(3,1,3);
 
recovered = L*ifft(Y);
 
plot(Fs*t,recovered(1:L),’b’,
 

Fs*t,data-recovered(1:L), ’r’); 
xlabel(’t/ms’); 
ylabel(’intensity’); 
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Let us walk through the script and figure out what each part does. First, we set 
some parameters to give meaning to the arrays, which are otherwise unitless5: 

Fs = 1000; % frequency of sampling 
T = 1/Fs; % sample time 
L = 10000; % length of sampling 
t = (0:L-1)*T; 

Next, we create the signal by amplifying the value of each sinusoid by some 
amplitude, as stored as two columns in our array frequencies. 

% mix up the signal
 
frequencies = [1, 120; 0.7, 100; 0.9, 60];
 
data = frequencies(:,1)’*sin(2*pi*frequencies(:,2)*t);
 

Now that we have created the signal, we introduce some random noise: 

data = data + 0.5*(1-2*rand(1,L)); 

Now, data contains values calculated for various values of t according to the 
function: 

f(t) = sin (2π(120)t) + 0.7 sin (2π(100)t) + 0.9 sin (2π(60)t) + η(t) (9) 

Next, we plot the signal as a function of time: 

subplot(3,1,1); 
plot(Fs*t,data); 
xlabel(’t/ms’); 
ylabel(’intensity’); 

Now we take the FFT of the data, scaling the length of the signal to a power of 
2 to optimize the accuracy of the result (see a description of the algorithm to 
understand why this works): 

NFFT = 2^nextpow2(L);
 
Y = fft(data, NFFT)/L;
 
f = Fs/2*linspace(0,1,NFFT/2+1);
 

Plot the FFT below the signal, using the magnitude of each coefficient to show 
the contribution of the frequency only, ignoring the phase shift. Normally the 
FFT gives us a double-sided result, but we ignore the high-frequency signals 
because they are a mirror of the lower frequencies in amplitude: 

subplot(3,1,2); 
plot(f,2*abs(Y(1:NFFT/2+1))); 
xlabel(’frequency/Hz’); 
ylabel(’|F(\omega)|’); 

5To a computer, numbers do not inherently have units. It is up to us to keep track of them 
ourselves and verify that they are, in fact, reasonable values. 
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Finally, perform the inverse of the FFT, take the difference with the orignal 
signal, and plot both: 

subplot(3,1,3);
 
recovered = L*ifft(Y);
 
plot(Fs*t,recovered(1:L),’b’,
 

Fs*t,data-recovered(1:L), ’r’); 
xlabel(’t/ms’); 
ylabel(’intensity’); 

Running this script gives us a nice plot with some useful information and demon­
strates that the algorithm does, in fact, work: 

Note that our signal peaks, while clearly present, are broadened. This is an 
artifact of the discrete nature of our transform, because we cannot perform an 
infinitely precise inner product to obtain an infinitessimally wide peak. This 
finite resolution can be improved by increasing our sampling frequency, but in 
some cases this becomes impractical or impossible. It is an important skill to 
recognize these limitations before committing time and effort to an experiment, 
so play around with the script to understand the limitations of this idealized 
situation. For example, try adding a high-frequency component to the signal, 
such as 550Hz. Where does this appear on the frequency spectrum? 

Now that we have a working script, we can put in any signal we want, scale 
the units appropriately, and see the result. For example, we can replace our 
sinusoids with sawtooth, square, or even a signal of our choosing, such as an 
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interferogram. Algorithms even exist to perform a multidimensional FFT, so we 
can use this same technique to study diffraction patterns in crystals or solutions 
to gain insight as to the average structure of a material6 . 

4.2 A Finite-Length Pulse 

Below is a script for generating a pulse of a given length, time offset, and central 
frequency, and for computing its FFT: 

Fs = 10^9; % Sampling frequency 
T = 1/Fs; % Sample time 
L = 3*10^-6; % Length of signal in time 
L_counts = ceil(L/T); % length of signal in samples 
t = (0:L_counts-1)*T; % Time vector 
pw = 1*10^-6; % time that our packet exists 
pw_counts = ceil(pw/T); % length of the packet in samples 
ps = 1*10^-6; % offset from zero for the packet 
ps_counts = ceil(ps/T); % offset of the packet in samples 
f = 15*10^6; % packet frequency 

y = sin(2*pi*(t-ps)*f); 
y(1:(ps_counts-1)) = 0; 
y((ps_counts+pw_counts):L_counts) = 0;
 

subplot(2,1,1);
 
plot(t*10^6,y)
 
xlabel(’Time/\mus’);
 
ylabel(’Intensity’);
 

NFFT = 2^nextpow2(L_counts); % Next power of 2 from length of y
 
Y = fft(y,NFFT)/L_counts;
 
f = Fs/2*linspace(0,1,NFFT/2+1);
 

% Plot single-sided amplitude spectrum.
 
subplot(2,1,2);
 
plot(f,2*abs(Y(1:NFFT/2+1)))
 
xlabel(’Frequency/Hz’)
 
ylabel(’|F(\omega)|’)
 

And an example result: 

6Some theoretical examples are discussed by Chandler in his Introduction to Modern Sta­
tistical Mechanics, and Guinier’s X-Ray Diffraction has a more complete discussion. 
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These sorts of pulses are important in NMR spectroscopy, where you might 
hear them referred to as π or π/2 pulses. Think about these ideas when per­
forming your NMR experiments for this class. 

Conclusions and Further Directions 

Because of the general way we can apply the Fourier transform to a class of 
problems, it is considered one of the most practical and beautiful products of 
mathematics. Because of its efficiency, the transform has been used as a building 
point for other techniques vital to classical computation, signal analysis, high-
frequency design, precision instrumentation, and a variety of other fields. Even 
emerging fields make use of the Fourier transform: Shor’s quantum factoring 
algorithm7 is fundamentally a Fourier transform of a signal composed of values 
computed in a cyclic group, and most efficient quantum algorithms employ a 
quantum Fourier transform to achieve their complexity reduction. Coherent 
control of light for spectroscopy and communication is governed by the mixing 
of optical frequencies, and a number of important projects are being carried 
out to understand the behavior of increasingly short and well-defined pulses of 
light in various systems. No matter where you look in physics, engineering, 
and computer science, the Fourier transform is an absolutely essential tool, and 
learning to recognize situations where it is applicable is a skill which will serve 
well over time. 

7http://arxiv.org/abs/quant-ph/9508027 
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