
The Discrete Fourier Transform and Its Use

5.35.01 Fall 2011

22 September 2011

Contents

1 Motivation 1

2 The Continuous Fourier Transform 4

2.1 A Brief Introduction to Linear Algebra 4

2.2 The Wave Formulation of the Fourier Transform 4

3 The Discrete Fourier Transform (DFT) 6

3.1 An Efficient Algorithm Exists . 6

4 Using the FFT in Matlab 7

4.1 A Mixture of Sinusoids . 9

4.2 A Finite-Length Pulse . 12

5 Conclusions and Further Directions 13

1 Motivation

In physics and engineering, we frequently encounter signals–that is, continuous
streams of data with a fixed sampling rate–representing some information of
interest. For example, consider the waves generated by an AM or FM trans­
mitter, the crashing of waves on a beach, a piece of music, or raindrops hitting
the ground. In each case, we can define some event to monitor, such as the
number of raindrops hitting a certain region, and record that data over time.
But just having this data does not tell us much, because we are not used to
unraveling such complicated and seemingly noisy patterns. For example, below
is the waveform (signal intensity, 44.1kHz sampling) of an excerpt from a song:

1

At first glance, we can see that some patterns emerge. For example, there
appears to be a strong signal every few thousand samples with more complicated
details in between, but beyond that we cannot easily say much about this signal.
But what if we can reduce these data to something more managable, such as
the rhythm of each instrument? Certainly, we could sit and listen to the music
to discern which instruments play at which frequency if we want to recreate
the song, but this requires significant time and effort by a dedicated observer.
What if we want to automate the process for practical reasons, such as voice
transcription or song identification? In this case, we would need to establish an
automated, well-characterized method for analyzing the signal.

One such tool is the Fourier transform, which converts a signal varying in
time, space, or any other dimension into one varying in a conjugate dimension.
For example, a time-varying signal may be converted into a signal varying in
frequency, such that we are able to view monochromatic time oscillations as
single peaks in the frequency signal. Applied to our comlex music waveform, we
see:

2

Suddenly, we start seeing that a few key rhythms and instruments are present
in our clip, as represented by the tallest peaks. Instead of worrying about the
whole signal, we can focus our attention on just the most promienent contribu­
tors to the signal, allowing us to address practically these signals, rather than
wallowing in a vast sea of numbers.

But what about applications to physical chemistry? We mentioned earlier
the concept of interferometry, the technique of examining the intensity of a signal
at various points in space as a method for determining the spatial frequencies
present in the incoming light, and therefore the temporal frequencies. This is
mathematically no different from the clip of music: we sample the intensity at
different positions, plot the signal, and use a Fourier transform to discern the
contribution of each frequency of light. The result is a spectrum of frequencies
(or wavelengths, depending on which way we prefer to label the horizontal axis),
which is then available for interpretation using the laws of physics. The two
situations are very different, yet both can be viewed in a sufficiently similar
way that the mathematics governing the behavior of the two systems becomes
identical. The recognition of these isomorphisms in the structure of physical and
mathematical phenomena revolutionizes science and technology, because they
permit us to solve many problems using identical techniques, meaning that the
work put into understanding a technique in one context suddenly pays off in all
fields.

3

2 The Continuous Fourier Transform

2.1 A Brief Introduction to Linear Algebra

Before delving into the mechanics of the Fourier transform as implemented on
a computer, it is important to see the origin of the technique and how it is
constructed. Therefore, we will start with the continuous Fourier transform,
seek an understanding of its structure, and exploit that understanding to see
how we might transform discrete signals, as nearly all real data are.

To begin with, recall the concept of a vector. We typically encounter such
structures as arrows in Euclidean space which are endowed with direction and
magnitude, and we consider two vectors equal when these two properties are
the same for each. You may also be familiar with the idea that a vector in space
can be expressed as the sum of other vectors, such as the î, ĵ, and k̂ vectors,
representing the x, y, and z axes, respectively. These vectors are orthonormal,
that is, each has a magnitude of 1 and sits at a right angle (is orthogonal) to
the others. So, together they form what we call an orthonormal basis set, which
means that all vectors in this three-dimensional space can be expressed as some
linear combination of the basis vectors. More concisely, for basic vectors ej,
constant coefficients cj , and some vector v in an N -dimensional vector space
spanned by {ej}:

NN
v = cj ej (1)

j=1

With a bit of math, we can define some fundamental behavior for abstract
vectors and vector spaces, including the abstract idea of an inner product, which
you may know as a dot product. Briefly, an inner product acts a measure
of the spatial overlap of two vectors, and therefore can be used as a test for
orthogonality. The inner product of a vector with itself gives the magntitude of
the vector squared, and so we can express any vector for some basic {ej } as:

NN v · ej
v = ej (2)

ej · ejj=1

So, for any vector in a finite vector space, we have a method for expressing the
vector as a sum over any basis, meaning that we are free to choose one which is
convenient to work with. For continuous vector spaces we must be a little more
careful with out definitions, but the basic ideas still hold.

2.2 The Wave Formulation of the Fourier Transform

Recall the Fourier series, which expresses an integrable function with period 2π
as a sum of sinusoidal functions:

∞Na0
f(t) = + aj cos (jt) + bj sin (jt) (3)

2
j=1

4

We can view the various sinusoids and the constant coefficient as vectors, and
define the inner product as an integral over the period (with a constant factor
for normalization): π1

f(t) · g(t) = f(t)g(t)dt (4)
π −π

Under this operation, we can see that each sine, cosine, and the constant are
mutually orthogonal, and with a bit more work we can prove that they span all
integrable periodic functions. Perhaps more importantly, this method allows us
a simple way to compute the expansion of the function on the basic set, freeing
us to note the contribution of each frequency. Building on this, the extension
to an arbitrary integrable function involves the relaxation of the restriction of
periodicity and allow any wave frequency in our basis set. The basic structure
of the space has changed somewhat, but the inner product we defined holds
if we extend the limits to be infinite and introduce a factor to correct for vol­

1ume . Therefore, for f(t) to be expressed as a sum of waves with frequencies
ω and coefficients F (ω), the projection of f(t) onto the wave basis set will look
something like: ∞1

F (ω) = √ f(t) cos (ωt)dt (5)
2π −∞

But, this is not quite complete, as we need to consider functions which are not
at their maximum at t = 0. So, we could write a similar expression for sin (ωt),
or we could be more clever.

Consider the complex numbers, which we can express in a number of equiv­
alent ways:

iθ z = a + ib = |z|e = |z| cos (θ) + i|z| sin (θ) (6)

So, what if we recast our view of waves in light of this? We can express compactly
the idea of a wave propagating along an axis by viewing the wave as extending
onto the complex axis, as a sort of helix of fixed diameter which coils around the
axis of propagation. Since (in most real-world examples) our original wave is a
real function, we can just take the real part of this wave function, which, with
complex coefficients allowed, becomes some sum of sine and cosine functions,
leading to the phase offset we were originally seeking. So, we can express the
more complete transform: ∞1 −iωtdtF (ω) = √ f(t)e (7)

2π −∞

where we allow F (ω) to take on complex values, to account for this phase shift2 .
We can also invert this expression: ∞1 iωtdtf(t) = √ F (ω)e (8)

2π −∞

This we call the Fourier transform and its inverse.
1This is related to the conversion between units in the transform, from angular frequency

to regular frequency.
2Re ((a + ib)eiωt) = Re ((a + ib) cos (ωt) + (ia − b) sin (ωt)) = a cos (ωt) − b sin (ωt)

5

3 The Discrete Fourier Transform (DFT)

The continuous Fourier transform is itself a great feat of mathematics, and an
enormous number of interesting problems can be expressed and solved efficiently
in this form. However, there is one problem: while we can work on continuous
intervals without issue in mathematics, the real world tends to be a little more
discrete. We cannot really have π apples on the table, unless you are the sort of
person who likes to work in unusual bases, and likewise the clock mechanisms in
timepieces and computers count using some division of seconds. Similarly, com­
puter memory is divided into discrete blocks, and we store our streams of data
using these discrete blocks. In such a world, it becomes highly impractical to
think about varying continuously over frequencies, but what if we instead some­
how choose only a limited number of frequencies, such that we can approximate
the true result in a way which balances practicality and accuracy?

3.1 An Efficient Algorithm Exists

The good news is, we can. An algorithm for computing the Fourier transform of
a discrete function (the discrete Fourier transform or DFT) efficiently does exist,
and exploits the mathematical structure of the polynomials, which can also be
viewed using the linear algebra framework we used. Using certain tricks, the fast
Fourier transform (FFT) can be used to calculate the DFT much more rapidly,
with the running time required being O(n ln (n)) instead of O(n2), where n is
the signal length and O represents the way the running time of the operation
scales with the paramater n. What this means is that doubling the signal only
slightly more than doubles the time needed to compute the transform, rather
than quadrupling it, and so we are able to work with rather large signals in a
more reasonable length of time.

The details of the FFT are far too gory to be spelled out here, but the ba­
sic idea is that we can express the inner product of each reference frequency

iωt).with the signal as a sum over complex divisions of unity (e These prod­
ucts can in turn be expressed as a matrix product of with the signal vec­
tor, meaning our problem becomes a matter of efficiently multiplying a ma­
trix with a vector. This can be broken down into subproblems by quartering
the matrix repeatedly, which is how we achieve the reduction to O(n ln (n))
growth. A full derivation of the method can be found in any good book on
algorithm design. See, for example, chapter 30 of the second edition of Car­
men, Leiserson, Rivest, and Stein’s Introduction to Algorithms. Weisstein gives
a rather technical overview of the mathematics of the algorithm on his web-
site at http://mathworld.wolfram.com/FastFourierTransform.html, with
plenty of references to more complete manuscripts on the subject. To see
how the algorithm is implemented on a computer, the GNU Scientific Library
(http://www.gnu.org/software/gsl/) is open-source and includes a few dif­
ferent FFT algorithms.

6

http://www.gnu.org/software/gsl
http://mathworld.wolfram.com/FastFourierTransform.html

4 Using the FFT in Matlab

Now that we have seen a bit of where the Fourier transform comes from and have
satisfied ourselves that an efficient method for computing the DFT of a signal
exists, we can exploit our knowledge for practical gain. Normally, this would
require that we actually sit down and program a computer to execute the FFT,
but the good folks writing mathematics packages such as Matlab, Mathematica,
the GNU Scientific Library, and countless others have already done this for us.
As a result, any numerical analysis package worth using should include this
function, but today we will be using Matlab.

Why Matlab? For one, Matlab acts as a friendly interface to the numerical
workhorse that is Fortran. Another good reason is that MIT pays for us to
have a license to use the software, and so we might as well use something that is
well-written, has a nice enough interface, and costs nothing to use (at least until
graduation). There are alternatives from the open source community which are
free regardless of who you are (GSL, for one), but most of these require a little
more computing expertise than is practical for this class3 . In short, Matlab
provides us the most power for the least effort required to understand how a
computer works, leaving us free to worry more about our methods than their
low-level implementation.

So, how do we use Matlab? There are a number of texts on this subject,
including Mathwork’s tutorial on their product and dozens of “Matlab for x”
textbooks, where x is your field of study. So, here we will cover only the most
important aspects of the operation of the software.

The first step is to download and install Matlab, following the directions
available at http://ist.mit.edu/services/software/math/tools. Packages
are available for Windows, Macintosh, and Linux, all of which have somewhat
different interfaces and commands shortcuts. However, the basic functionality
of the package remains the same, so we will talk mostly about the Matlab
commands of interest.

Once you install and run the package, you should be greeted with an in­
terpreter with all sorts of subwindows. The one we care about most is in the
center, as this is our command line interface to the Matlab engine. We will
enter our commands and see results here when working interactively, and when
running scripts and errors or results will also be displayed here.

Matlab’s data structure is the array, which can have essentially any number
of dimensions, limited by the memory in your computer. We fill this array with
a single data type, such as 32-bit integers or floating-point numbers, and can
access the elements by choosing the appropriate indices. We can even use a nice
shorthand to create certain types of arrays:

3If you find that you are interested in physical chemistry more than just as a hobby, it
would be wise to acquire a working knowledge of computer science fundamentals, such as
those taught in Abelson and Sussman’s Structure and Interpretation of Computer Programs,
as well as a solid understanding of algorithmic design. Even if you never end up writing much
code yourself, the discipline necessary to understand the analysis will prove highly useful in
experimental design.

7

http://ist.mit.edu/services/software/math/tools

>> 1:10
ans =

1 2 3 4 5 6 7 8 9 10

In the array above, we created an array of ascending numbers, by default sepa­
rated by 1. We can also change the spacing of the array elements by inserting
a third term:

>> 1:0.5:3
ans =

1.0000 1.5000 2.0000 2.5000 3.0000

Notice that we now have an array of floating-point numbers, rather than inte­
gers. The representation of floating point numbers on a computer is approxi­
mate, so when performing calculations we must make sure that the precision of
the representation (32-bit, 64-bit, etc) is sufficient for our needs4 . In this case
we are happy with just a few significant figures, so the standard 32-bit floating
point number is adequate.

Now that we can create arrays, we can store and address them (a semicolon
suppresses the output of a command):

>> a = 1:10;
>> a(2:5)
ans =

2 3 4 5

We can even create multidimensional arrays and address each dimension sepa­
rately:

>> a = rand(3,3)
a =

0.9649 0.9572 0.1419
0.1576 0.4854 0.4218
0.9706 0.8003 0.9157

>> a(:,3)
ans =

0.1419
0.4218
0.9157

Here, the : is used as shorthand for the whole dimension. So, we have asked
Matlab for every row of the third column, but we could easily mix and match
the indices to get the exact window desired.

The real strength of Matlab is that it contains some high-quality algorithms
for calculating quantities of great interest to us. For example, we can rapidly

4If you will ever have to work with computers in anything more than a passive capac­
ity, learn about machine structures and their implications. Knowing the limitations of your
instruments is absolutely essential to performing good experimental work.

8

calculate the eigenvalues and eigenvectors of large matrices, take Fourier trans­
forms of long signals, perform statistical analysis of large data sets, make plots
of thousands of data points, and so on. The breadth of what Matlab can do is
documented in the manual for the package, although many books also exist to
introduce a reader to some of the most relevant commands. For now, let us turn
our attention to a simple script for taking a Fourier transform and plotting it.

4.1 A Mixture of Sinusoids

Here is a brief script to compute a signal, take its Fourier transform, and then
invert the transform to show that we recover the original signal:

Fs = 1000; % frequency of sampling

T = 1/Fs; % sample time

L = 1000; % length of sampling

t = (0:L-1)*T;

% mix up the signal

frequencies = [1, 120; 0.7, 100; 0.9, 60];

data = frequencies(:,1)’*sin(2*pi*frequencies(:,2)*t);

data = data + 0.5*(1-2*rand(1,L));

subplot(3,1,1);

plot(Fs*t,data);

xlabel(’t/ms’);

ylabel(’intensity’);

NFFT = 2^nextpow2(L);

Y = fft(data, NFFT)/L;

f = Fs/2*linspace(0,1,NFFT/2+1);

subplot(3,1,2);

plot(f,2*abs(Y(1:NFFT/2+1)));

xlabel(’frequency/Hz’);

ylabel(’|F(\omega)|’);

subplot(3,1,3);

recovered = L*ifft(Y);

plot(Fs*t,recovered(1:L),’b’,

Fs*t,data-recovered(1:L), ’r’);
xlabel(’t/ms’);
ylabel(’intensity’);

9

Let us walk through the script and figure out what each part does. First, we set
some parameters to give meaning to the arrays, which are otherwise unitless5:

Fs = 1000; % frequency of sampling
T = 1/Fs; % sample time
L = 10000; % length of sampling
t = (0:L-1)*T;

Next, we create the signal by amplifying the value of each sinusoid by some
amplitude, as stored as two columns in our array frequencies.

% mix up the signal

frequencies = [1, 120; 0.7, 100; 0.9, 60];

data = frequencies(:,1)’*sin(2*pi*frequencies(:,2)*t);

Now that we have created the signal, we introduce some random noise:

data = data + 0.5*(1-2*rand(1,L));

Now, data contains values calculated for various values of t according to the
function:

f(t) = sin (2π(120)t) + 0.7 sin (2π(100)t) + 0.9 sin (2π(60)t) + η(t) (9)

Next, we plot the signal as a function of time:

subplot(3,1,1);
plot(Fs*t,data);
xlabel(’t/ms’);
ylabel(’intensity’);

Now we take the FFT of the data, scaling the length of the signal to a power of
2 to optimize the accuracy of the result (see a description of the algorithm to
understand why this works):

NFFT = 2^nextpow2(L);

Y = fft(data, NFFT)/L;

f = Fs/2*linspace(0,1,NFFT/2+1);

Plot the FFT below the signal, using the magnitude of each coefficient to show
the contribution of the frequency only, ignoring the phase shift. Normally the
FFT gives us a double-sided result, but we ignore the high-frequency signals
because they are a mirror of the lower frequencies in amplitude:

subplot(3,1,2);
plot(f,2*abs(Y(1:NFFT/2+1)));
xlabel(’frequency/Hz’);
ylabel(’|F(\omega)|’);

5To a computer, numbers do not inherently have units. It is up to us to keep track of them
ourselves and verify that they are, in fact, reasonable values.

10

Finally, perform the inverse of the FFT, take the difference with the orignal
signal, and plot both:

subplot(3,1,3);

recovered = L*ifft(Y);

plot(Fs*t,recovered(1:L),’b’,

Fs*t,data-recovered(1:L), ’r’);
xlabel(’t/ms’);
ylabel(’intensity’);

Running this script gives us a nice plot with some useful information and demon­
strates that the algorithm does, in fact, work:

Note that our signal peaks, while clearly present, are broadened. This is an
artifact of the discrete nature of our transform, because we cannot perform an
infinitely precise inner product to obtain an infinitessimally wide peak. This
finite resolution can be improved by increasing our sampling frequency, but in
some cases this becomes impractical or impossible. It is an important skill to
recognize these limitations before committing time and effort to an experiment,
so play around with the script to understand the limitations of this idealized
situation. For example, try adding a high-frequency component to the signal,
such as 550Hz. Where does this appear on the frequency spectrum?

Now that we have a working script, we can put in any signal we want, scale
the units appropriately, and see the result. For example, we can replace our
sinusoids with sawtooth, square, or even a signal of our choosing, such as an

11

interferogram. Algorithms even exist to perform a multidimensional FFT, so we
can use this same technique to study diffraction patterns in crystals or solutions
to gain insight as to the average structure of a material6 .

4.2 A Finite-Length Pulse

Below is a script for generating a pulse of a given length, time offset, and central
frequency, and for computing its FFT:

Fs = 10^9; % Sampling frequency
T = 1/Fs; % Sample time
L = 3*10^-6; % Length of signal in time
L_counts = ceil(L/T); % length of signal in samples
t = (0:L_counts-1)*T; % Time vector
pw = 1*10^-6; % time that our packet exists
pw_counts = ceil(pw/T); % length of the packet in samples
ps = 1*10^-6; % offset from zero for the packet
ps_counts = ceil(ps/T); % offset of the packet in samples
f = 15*10^6; % packet frequency

y = sin(2*pi*(t-ps)*f);
y(1:(ps_counts-1)) = 0;
y((ps_counts+pw_counts):L_counts) = 0;

subplot(2,1,1);

plot(t*10^6,y)

xlabel(’Time/\mus’);

ylabel(’Intensity’);

NFFT = 2^nextpow2(L_counts); % Next power of 2 from length of y

Y = fft(y,NFFT)/L_counts;

f = Fs/2*linspace(0,1,NFFT/2+1);

% Plot single-sided amplitude spectrum.

subplot(2,1,2);

plot(f,2*abs(Y(1:NFFT/2+1)))

xlabel(’Frequency/Hz’)

ylabel(’|F(\omega)|’)

And an example result:

6Some theoretical examples are discussed by Chandler in his Introduction to Modern Sta­
tistical Mechanics, and Guinier’s X-Ray Diffraction has a more complete discussion.

12

5

These sorts of pulses are important in NMR spectroscopy, where you might
hear them referred to as π or π/2 pulses. Think about these ideas when per­
forming your NMR experiments for this class.

Conclusions and Further Directions

Because of the general way we can apply the Fourier transform to a class of
problems, it is considered one of the most practical and beautiful products of
mathematics. Because of its efficiency, the transform has been used as a building
point for other techniques vital to classical computation, signal analysis, high-
frequency design, precision instrumentation, and a variety of other fields. Even
emerging fields make use of the Fourier transform: Shor’s quantum factoring
algorithm7 is fundamentally a Fourier transform of a signal composed of values
computed in a cyclic group, and most efficient quantum algorithms employ a
quantum Fourier transform to achieve their complexity reduction. Coherent
control of light for spectroscopy and communication is governed by the mixing
of optical frequencies, and a number of important projects are being carried
out to understand the behavior of increasingly short and well-defined pulses of
light in various systems. No matter where you look in physics, engineering,
and computer science, the Fourier transform is an absolutely essential tool, and
learning to recognize situations where it is applicable is a skill which will serve
well over time.

7http://arxiv.org/abs/quant-ph/9508027

13

MIT OpenCourseWare
http://ocw.mit.edu

5.35 / 5.35U Introduction to Experimental Chemistry
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

