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5.62 Lecture #4: 	Microcanonical Ensemble: 
Replace {Pi} by Ω. Q vs. Ω. 

To this point, we have worked with the CANONICAL ENSEMBLE: 

P(E) = 
Ω(N,V,E)e−E/kT 

Q(N,V,T) 

• probability of finding an assembly state with energy E in the ensemble 

• probability of finding the “gas” with energy E 

A physical picture that describes the canonical framework is 

Heat BathGas 

• N is constant 
• V is constant 
• T is constant 
• E fluctuates (HOW MUCH?) 

The energy of the gas fluctuates (with time or for different states within the
ensemble). Extra energy is withdrawn from the heat bath or is deposited in the heat bath
so that the temperature of the gas remains constant. 

A simpler ensemble that is also quite useful is the microcanonical ensemble 

The MICROCANONICAL ENSEMBLE is a collection of assemblies in states in which 
N, V, and E are fixed. 

Since all states of a microcanonical ensemble have same energy, Eα = Eβ = Eγ = … E, all 
assembly states are degenerate. 

Ω(N,V,E) = degeneracy [e.g. particles in cube: (nx,ny,nz) = (211), (121), (112)] 

= number of distinguishable assembly states with N, V, and E fixed 

= total number of assembly states in microcanonical ensemble. 
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A physical picture of microcanonical framework is 

SYSTEM IS ISOLATED 
Gas • E is constant 

• T fluctuates 

Why have different ensembles? 

• Some physical situations more closely correspond to one ensemble or another
(there are more than these two). 

• Some problems are easier to solve in the context of one ensemble or another 

• Results for macroscopic properties are independent of which type of ensemble is
used. 

MICROCANONICAL ENSEMBLE: CALCULATION OF THERMODYNAMIC 
PROPERTIES (Macroscopic Observables from Microscopic Properties) 

As in Lecture #2, we want the set of assembly state probabilities which maximizes
entropy subject to the normalization constraint. 

Ω 

entropy: S = –k ∑ Pj lnPj
j=1 

take differential to maximize (i.e. to find extremum) 

0 = δS = –k ∑
Ω 

δ ⎡⎣Pj lnPj ⎤⎦ = –k ∑
Ω ⎛

δPj lnPj + 
PjδPj ⎞


j=1 j=1 ⎝⎜ Pj ⎠⎟


Ω 

= –k ∑δPj (lnPj + 1)
j=1 

constraint: 

Ω Ω 

∑ Pj = 1 = ∑ (Pj + δPj )
j=1 j=1 

thus 
Ω Ω 

∑ δPj = 0  or δP1 = −∑δPj. 
j=1 j=2 
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Inserting this equation into the extremum condition for S, 

Ω 

0 = δS = –kδP1 (ln P1 +1) − k∑ δPj (ln Pj +1)
j=2 

where we partitioned out the first term in the sum 
introduce constraint on δP1 

Ω Ω 

δS = +k∑δPj (ln P1 +1) – k ∑ δPj (ln Pj +1)
j=2 j=2 

Ω 

δS = −k∑δPj (ln Pj − ln P1 ) = 0 
j=2 

and since the δPj are independent for all j = 2, 3, 4, … , Ω, the coefficient of each 
δPj is zero: 

ln Pj − ln P1 = 0 
ln Pj = ln P1 

Pj = P1 

⎫ 
⎪
⎬ 
⎪
⎭


 for j = 2, 3, 4, … Ω 

That is, each distinguishable (same E) state is of equal probability in the micro-
canonical ensemble 

=

1

Ω


= Pj 

Ω

∑
Ω

∑1 =
 Pj =
 P1 = ΩP1  so P1normalize: 
i=1 i=1 

Pj = 
1 

Ω(N,V,E) 
MICROCANONICAL 
DISTRIBUTION 
FUNCTION 

Thus 
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⎛
⎝


1

Ω

⎞
⎠
ln
⎛⎝


1

Ω

⎞
⎠


Ω

∑
Ω

∑S = −k
 Pj ln Pj = −k 
j=1 j=1 

= −k(Ω) 1 
Ω 

⎛ 
⎝ 

Ω terms 
in sum 

⎞
⎠
ln
⎛⎝


1

Ω

⎞
⎠
= −k ln
⎛⎝


1

Ω

⎞
⎠
= k ln Ω 

written on Boltzmann'sS(N,V,E) = k ln Ω(N,V,E) 
tombstone 

WRITING THERMODYNAMIC FUNCTIONS IN

TERMS OF MICROCANONICAL FRAMEWORK


from thermodynamics: 

dU = TdS – pdV (the thermodynamic U is the same thing as the E  used here) 

since dE = 0 for (microcanonical) isolated 

⎛
⎜
⎝

∂S
⎞⎟

⎠

TdS = pdV or 

T
p = 

∂V
 E,N 

since S = k ln Ω 

pressurep = kT⎜⎛∂ ln Ω⎟
⎞ 

⎝ ∂V ⎠E,N 

from thermo… 

H = E + pV = E + kT⎜⎛∂ ln Ω⎟
⎞ V = E + kT⎜⎛∂ ln Ω⎟

⎞ 
⎝ ∂V ⎠E,N ⎝∂ lnV ⎠E,N 

H = E + kT⎛⎜∂ ln Ω⎞
⎟

⎝∂ lnV ⎠E,N 

enthalpy 

from thermo… A = E  – TS 

A = E  – kT ln Ω Helmholtz free energy 
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from thermo… G = A + pV 

G = E − kTln Ω + kT⎜⎛∂ ln Ω⎟
⎞ 

Gibbs free energy⎝∂ lnV ⎠E,N 

Which ensemble? 

An obvious question that arises is which ensemble to use in solving a given
problem. 

Frequently the conditions of the problem will dictate: 

• interpreting an experiment carried out at constant N, V, T ⇔ canonical 

• interpreting an experiment carried out in isolated system ⇔ microcanonical 

Other times, whichever ensemble is easiest to use turns out to be best, because in
limit of large N, ensembles are quite similar. For example, compare energy
distribution for canonical and microcanonical ensembles: 

CANONICAL ENSEMBLE MICROCANONICAL ENSEMBLE 

P(E) = 
Ω N,V,E( ) e−E /kT 

Q N,V, T( ) P(E) = 1 

The numerator is a product of

increasing (Ω) and decreasing

(e–E/kT) functions of E.


On the surface, the functions look quite different, but let's compare their widths.
Width of microcanonical distribution is zero. 
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For canonical ΔEi = Ei − E =  deviation of i-th energy from average. One 
measure of width of distribution is 

(ΔE)2 =  root mean square deviation 

(ΔE)2 = ∑ Pi (Ei − E)2 = ∑ Pi (E2
i − 2EEi + E2 )

i i 

= (E)2 − 2E2 + E2 = (E)2 − E2 average square deviation 

ΔE( )2 = E( )2 − (E)2 rms deviation 

It turns out that 

E2 1 ⎛ ∂2Q ⎞ = 
Q ⎝⎜ ∂β2 ⎠⎟ 

as will be shown here 

∂Q = 
∂∑ 

i
e−βEi 

= ∑(−Ei )e
−βEi = −∑ 

Pi

E

= 

iP

e

iQ 

−βE

= 

i 

−

Q

EQ
∂β ∂β i i 

and take ∂  again, starting from the definition of Q, 
∂β

∂
∂β

2Q
2 = ∑ 

i 
E2

i e
−βEi = ∑ 

i 
Ei

2PiQ = E2Q 

Therefore … ΔE2 ≡ E2 − E2 = 
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1 ∂2Q − (E)2 = 
1 ∂ (−EQ) − (E)2 = − ∂E − E 1 ∂Q − (E)2 

Q ∂β2 Q ∂β ∂β Q ∂β 
  

E2 E 

ΔE2 = − ∂E + (E)2 − (E)2 = − ∂E 
∂β ∂β 

Now, to convert to 
∂
∂ 
T 

ΔE2 ∂E ⎛ ∂T⎞ ⎛ ∂E ⎞ = − 
∂β 

= −
⎝⎜ ∂β ⎠⎟ ⎝⎜ ∂T⎠⎟ N,V 

⎛ ∂β ⎞ −1 ⎛ ∂E ⎞ ⎛ ∂(1 / kT) ⎞ −1 ⎛ ∂E ⎞ = − ⎝ ∂T⎠ ⎝⎜ ∂T⎠⎟ N,V 
= −⎝ ∂T ⎠ ⎝⎜ ∂T⎠⎟ N,V 

⎛ +1 ⎞ −1 ⎛ ∂E ⎞ = ⎝⎜ ⎠⎟ ⎝⎜ ∂T⎠⎟ N,V kT2 
  

CV 

ΔE2 = kT2CV 

Relative (fractional) fluctuation about average energy in canonical ensemble 

ΔE2 

E E
kT2CV N1/2 

N
1 = ∝ 

N 
∝ 

[Both CV and E are extensive variables, which by the definition of extensive are
proportional to N.] 

ΔE2 

E 
For large N ≈ 1024 

∝ N−1/2 

10–12 
 1 

Conclusion: For large N (macroscopic systems), P(E) is very narrow in the 
canonical framework. For most purposes, it can be considered to be as narrow as
that in microcanonical framework. 
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ΔE2 

E 
⎧0 microcanonical 

= ⎨ 
⎩ 10−12  canonical 

Thus, can use either ensemble. 

SUMMARY


THERMODYNAMIC CANONICAL MICROCANONICAL 
FUNCTION 

E  OR T E(N,V, T) = kT2 ∂ ln Q 
∂T 

⎛
⎜
⎝ 

⎞
⎟
⎠N,V 

T = k 
∂ ln Ω 
∂E 

⎛ 
⎝ 

⎞ 
⎠N,V 

⎡ 
⎢⎣ 

⎤ 
⎥⎦ 

−1 

S k ln Q + E /T k ln Ω 
A –kT ln Q E  – kT ln Ω 

p kT 
ln Q ∂ 
∂ 

⎛ 
V⎝ 

⎞ 
⎠ N,T 

kT 
∂ ln Ω 
∂V 

⎛ 
⎝ 

⎞ 
⎠N,E 

H kT 
ln Q ∂ 

∂ ln T 
⎛ 
⎝ 

⎞ 
⎠N,V 

+ 
∂ ln Q 
∂ ln V 

⎛ 
⎝ 

⎞ 
⎠N,T 

⎡ 
⎢⎣ E  + kT(∂ ln Ω/∂ ln V)N,E 

G 

µ 

−kTln Q + kT 
∂ ln Q 
∂ ln V 

⎛ 
⎝ 

⎞ 
⎠N,T 

–kT(∂ ln Q/∂N)V,T 

E  + kT(∂ ln Ω/∂ ln V)N,E
–kT ln Ω 

–kT(∂ ln Ω/∂N)E,V 

Partition Functions 

Q N,V, T( ) = 
j 
∑ e−E j kT 

= 
E 
∑ Ω(E)e−E kT 

Ω(N,V, E) = (1) 
j 
∑ 

sum over states with 
energy E 

−1
⎛
⎝

∂ ln Ω

∂E


⎞
⎠
N,V 

⎡
⎢⎣ 

Derive T= k 

Q =

⎤

⎥⎦


Ωe−E kT 

E 
find extremum in Q wrt E (i.e., find most probable E) 

Ω⎛∂Q ⎞ ⎛∂Ω ⎞ e−E kT − 
kT
e−E kT ⎤ 

⎝∂E ⎠
⎟ 
N,V 

= 0 = ∑ 
E ⎣⎢

⎡
⎝
⎜
∂E ⎠

⎟ 
N,V 

⎜ ⎥⎦

∑
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every term in sum (for each value of E) must be 0 

∂Ω 
∂E 

⎛ 
⎝
⎜ 

⎞ 
⎠
⎟ 
N,V 

= 
Ω 
kT 

1 
Ω 

∂Ω 
∂E 

⎛ 
⎝
⎜ 

⎞ 
⎠
⎟ 
N,V 

= 
1 
kT 

k 
∂ ln Ω 
∂E 

⎛ 
⎝
⎜ 

⎞ 
⎠
⎟ 
N,V 

= 
1 
T 
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