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5.62 Lecture #9: CALCULATION OF MACROSCOPIC

PROPERTIES FROM MICROSCOPIC ENERGY LEVELS:


qtrans 

The macroscopic thermodynamic properties are written in terms of Q. Q is
related to the single-molecule partition function q, which is the sum over the molecular
energy levels or states. Atoms and molecules have different kinds of states or energy
levels. Each type of state makes its contribution, through q, to the macroscopic property
under consideration. 

TRANSLATIONAL CONTRIBUTION TO MACROSCOPIC PROPERTIES 
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(ln N! = N ln N – N is Stirling’s Approximation) 

Calculate the translational contribution to the average energy (one of the contributions to
U, internal energy) 

∂ lnQtrans E = kT2
⎛
⎜
⎝


⎞
⎟
⎠
∂T
 N,V 

3 N = 
∂ lnQtrans ⎛
⎜
⎝


⎞
⎟
⎠
∂T
 N,V 2 T 

E = kT2 

⎝⎜
⎛ 
2
3 N
T ⎠⎟
⎞ = 

2
3NkT = 

2
3 nRT 



5.62 Spring 2008 Lecture 9, Page 2 

Average translational energy of N molecules in a gas 

What about the contribution of translational energy to the heat capacity 
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Recall from 5.60 that CV for an ideal monatomic gas was often observed to be 

3 R
2


CV = CV / n = 

There are no other important places other than translation for an ideal monatomic gas to
put internal energy. 

Calculate translational contribution to pressure : 
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(recall dA = –pdV – SdT + µdN) p = −

∂V


because A = –kT ln Q 
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So 

p = NkT/V

pV = NkT = nRT
 IDEAL GAS LAW 

Calculate translational contribution to entropy 

S = k ln Q + E /T 

⎛
⎝


⎞
⎠
lnQtrans = NlnV + ln (only the first term

N!
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⎡
lnQtrans = Nln ⎢

(2π
h
k)
3 

3/2 

⎦
⎥
⎤ 
+ 
2
3N lnm + 

2
3N lnT + NlnV − lnN! 

⎣

Again ln N! ~ N ln N – N Stirling's approximation, which is 
valid for large N 

= N ln 
(2πk)3/2 

h3 

⎡ 
⎢
⎣


⎧⎪
⎨


⎫⎪
⎬
⎞
⎟
⎠ 

⎤

⎥
⎦

+1+


3 3
 ⎛
⎜
⎝

ln T + ln 
V 
N

So lnQtrans lnm +

2
 2
⎪⎩
 ⎪⎭


Now 
V kT ∴ ln V ln k + ln T − ln p 
N 

= 
p N 

= 

lnQtrans = N ln (2π)3/2 k5 2 

h3 

⎡ 
⎢
⎣


⎡
⎢
⎣


⎤

⎥
⎦


+ 1+

⎤

⎥
⎦


3 5
ln m +
 ln T − ln p
So 
2
 2


S = k lnQ + 
E
T 
= k lnQ + (3 / 2) Nk


⎡ 
⎢
⎣ 

⎡
⎢
⎣ 

S = Nk ln 
(2π)3/2 k5/2 

h3 

⎤

⎥
⎦

5 3 5+ 
2 
+ 
2 
lnm + 

2 
ln T − ln p 

⎤

⎥
⎦


S 5 lnT + 
3 5 

Nk 
= 
2 2

lnm − ln p + 
2 
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S 5 lnT + 
3 lnm − ln p −1.164871

Nk 
= 
2 2 

[T] = K; [m] = g mol–1; [p] = atm (not S. I.) 
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S Nk = 
5 
2 

ln T + 
3 
2 

ln m − ln p − 1.15170 [p] = bar 

SACKUR-TETRODE EQUATION

1911-13


[Sackur and Tetrode were people, not equipment!]


P(ε) FOR TRANSLATION 

We know Pi for translation 

Pi = 
e−ε(L,M,N)/kT 

where ε(L,M,N) = 
h2 ⎛ L2 M2 N2 ⎞ = PL,M,N qtrans 8m ⎝⎜ a2 + 

b2 + 
c2 ⎠⎟ 

quantum = εx (L) + εy (M) + εz (N) 
state 

The lowest possible energy is for
L = M = N = 1 

probability of molecule in

translational state with

the three quantum

numbers # L, M, N


But P(ε) is a more useful form than Pi. 

Rewrite PL,M,N as P(ε) 
P(ε) = g(ε)e−ε/kT / q trans 

NEED: to calculate g(ε)

 Consider energy of N2 molecule in state L = 1, M = 1, N = 1 in 10 cm cube. 

ε(1,1,1) = 3 × 1.695 × 10–20 kcal/mol (3 = 1 + 1 + 1) 

prob. of
molecule 
with energy ε 

degeneracy (# of molecular
states with energy ε) 
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Next higher energy state is 

ε(2,1,1) = 6 × 1.695 ×10–20 kcal/mol (6 = 4 + 1 + 1)

 States are very close in energy: Δε ≈ 10–20 kcal/mol 

Because the allowed energies of a molecule are so closely spaced, the discrete P(ε) can be
approximated by a continuous P(ε) dε. If P(ε) is treated as continuous, then PL,M,N must 
also be treated continuous because these distributions must map onto each other. The 
problem is more easily solved for 1 dimension at a time. Consider the x-dimension only 

P(εx)d(εx)	 represents probability of finding the molecule with energy between
εx and εx + dεx  due to translation in the x direction; we want to
determine this continuous distribution 

P(L)dL	 represents probability of finding the molecule with quantum number
L between L and L + dL for motion in x-direction; we know this
distribution by virtue of knowing the discrete distribution PL 

dL # states between L and L + dL = 
dεx εx (L + dL) − εx (L) 

Often described as “# states per unit εx.” 

quantum number, not length 
  

↓ 

e−εx (L)/kT ⎛ 2πmkTa2 ⎞1 2 
a is length of container inP(L) = 

qx 

where qx  = 
⎝
⎜ 

h2 ⎠
⎟ x direction 

because 

⎛ 2πmkTa2 ⎞1 2	 1 2 1 2 ⎛ 2πmkTb2 ⎞ ⎛ 2πmkTc2 ⎞ 
qtrans = qxqyqz = 

⎝⎜ h2 ⎠⎟ ⎝⎜ h2 ⎠⎟ ⎝⎜ h2 ⎠⎟ 

Now P(εx) and P(L) are two continuous distribution functions which must map onto each
other. In essence, they represent the same distribution but the variable has changed.
Problem is to relate P(L) to P(εx). This can be done by 
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P(εx )dεx = P(L)dL 

P(εx ) = P(L) dL 
dεx 

Jacobian of the transformation 
(see pages 9-7, 9-8 about the
change of variables) 

The Jacobian for this change of variables is essentially the degeneracy. It tells us 
how many states there are within a small interval in εx (“density of states”, dn/dE). [In
quantum mechanics the density of states is also important. In one dimensional systems, it
is proportional to the period of motion in a potential.] 

dL
Calculate 

dεx 

so that P(εx) can be calculated 

L2h2 ⎛ 8ma2 εx ⎞
1/2 

εx = 
8ma2 or L = 

⎝⎜ h2 ⎠⎟ 

dL = 
d ⎛ 8ma2 εx ⎞

1/2 
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⎝⎜ h2 ⎠⎟ ⎝⎜ h2 ⎠⎟ 
ε= x 
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ε
−
x
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e−εx L 1/2 

dεx qx ⎝⎜ h2 ⎠⎟ 

e−εx /kT ⎛ 2ma2 ⎞1/2 
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−
x
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⎜ ⎟

⎝ h2 ⎠


kTP (εx ) = (πkT)−1/2 εx 
−1/2e−εx 

Check normalization (require ∫
∞ P (εx )dεx = 1)0 

kTdεxP (εx ) dεx = ⎜
⎝
⎛
πkT
1 

⎠
⎟
⎞1/2 

ε−x
1/2 e−εx 

∫ P(εx )dεx = ⎜
⎛ 1 ⎞1/2 π1/2


⎝πkT⎠
⎟ 

(1 / kT)1/2 
= 1


correctly normalized.

Therefore:
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kTP (εx ) = (πkT)−1/2 εx 
−1/2e−εx 

BOLTZMANN KINETIC 
ENERGY DISTRIBUTION 
FUNCTION IN 1D 

Probability of finding a free molecule in a gas
with kinetic energy between εx and εx + dεx

Note on Change of Variable(s) 

For functions of one variable 

We know f(x) but we want to take the information contained in f(x) and re-express it in
terms of a different variable, y. 

f(x)dx ≡ g(y)dy 

We want to know g(y) and know how to use it in place of f(x). 

dydy = dx
dx 

f (x)dx = g(y) dy ] dydx thus f (x) = g y(x)[
dx dx 

and 

g(y) = f [x(y)] dx 
dy 

g[y(x)] means: evaluate the function g(y) at the value of y determined by the value of the
function y(x) evaluated at x. 

due to translation in x-direction. 
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For functions of two or more variables 

f (x, y, z,… = g r, s,t,…)drdsdt…)dxdydz… ( 

f (x, y, z…) = 
∂(r, s,t,…) ( ( ( ( ))
∂(x, y, z,…) 

g r x, y, z,…), s x, y, z,…),t x, y, z,… 


“Jacobian” of 
transformation 

∂r 
∂x 

∂s 
∂x 

∂t 
∂x 

… … 

∂ r, s,t,…( ) 
∂ x, y, z,…( ) 

= 

∂r 
∂y 
∂r 
∂z 

∂s 
∂y 
∂s 
∂z 

∂t 
∂y 
∂t 
∂z 

… 

… 

… 

… 

. . . … … 

. . . … … 

where the single derivative for one variable is replaced by an N × N determinant of 
derivatives for N variables. 

Example: x, y, z, ↔ r, θ, φ 

x = r sin θ cos φ 
y = r sin θ sin φ 
z = r cos θ 

3 x 3 determinant 

∂x ∂y ∂z 
∂r ∂r ∂r sθcφ sθsφ cφ 

dxdydz = 
∂x 
∂θ 
∂x 

∂y 
∂θ 
∂y 

∂z 
∂θ 
∂z 

drdθdφ = rcθcφ 

−rsθsφ 

rcθsφ 

rsθcφ 

−rsθ 

0 

drdθdφ 

∂φ ∂φ ∂φ 

which reduces to the familiar result: 

dxdydz = r2sinθ drdθdφ. 
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A Note About Negative Temperature 

We saw that the molecular partition function is 
kT q = ∑ e−εi 

i 

and that the fractional population of the i-th level in one molecule is 

fi = e−εi kT q 

and the population of that level in a sample containing N molecules is 

ni = Nfi . 
The population ratio for levels i and j 

fi ni − ε( i −ε j ) kT = = e
f j nj

For T > 0. 

When εi < εj, f j < fi 

For T → 0K f j  fi 

For T →∞ and εi < εj f j ≈ fi 

But if f j > fi  (as occurs in a laser gain medium) that would imply T < 0. 

There is no possibility of equilibrium with T < 0K, but one often uses a population ratio
as a thermometer. Thus a “steady state” (but not equilibrium) situation is often described
by a negative absolute temperature. Note that, if you started with a steady state sample at
“T < 0K”, and then turned off the source of energy input that sustains the nonequilibrium
steady state, that “T” (defined by a population ratio) would become increasingly negative,
pass through –∞ directly to +∞, and then decrease to the equilibrium T of the
surroundings. 
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