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5.62 Lecture #11: INTERNAL DEGREES OF FREEDOM

FOR ATOMS AND DIATOMIC MOLECULES


Readings:	 Hill, pp. 147-159;
Maczek pp. 42-53

Pages 11-1, 11-2 and 11-3 are a review of Lecture #10. 

ATOMS — 	 have one internal degree of freedom
ELECTRONIC degree of freedom 

MOLECULES — have other degrees of freedom 

ELECTRONIC, VIBRATION, AND ROTATION which each
contribute to total energy and to other macroscopic properties. 

Nuclear hyperfine? [Nuclear spin degeneracy factors. LATER.] 

Internal energy adds to translational energy to get total energy 

ε = εtrans + εint 

quantum #'s  internal quantum #'s
N,M,L 

where εint = energy from internal degrees of freedom 

q = ∑ e−εi kT = ∑g(ε)e− ε( trans +εint ) kT 

i ε 
all molecular all molecular 

states energies 

We do not have to start from the beginning. qtrans and qint appear as separate multiplicative
factors. 

q = ∑ e−εtrans kT∑ e−εint kT 

translational internal
 states  states 

q = qtrans • qint ← INTERNAL MOLECULAR 
PARTITION FUNCTION 

(qtransqint )
N 

N! 
qNtrans 
N! 

Q =
 =

⎛
 ⎞

⎜⎝
 ⎟⎠


qint
N 
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NOTE: N! is included with qtrans. This is because it's the translational motion that causes 
the positions of identical particles to be interchanged (thus rendering them
indistinguishable), requiring the factor of N! The internal motions do not interchange
particles. 

Q = Qtrans Qint 

Qtrans = qtrans 
N 

N! 

Qint = qint
N 

CANONICAL PARTITION 
FUNCTION 

CANONICAL TRANSLATIONAL 
PARTITION FUNCTION 

CANONICAL INTERNAL 
PARTITION FUNCTION

 Classically 

Qcl = Qtrans,cl Qint,cl 

Qtrans,cl = 
qtrans,cl
N 

N! 
= 

e−εtrans /kT ∫ dp3dq⎡⎣ 

N!h3N 

3 ⎤⎦ 
N 

Qint,cl = qint
N = ∫ dp3Ndq3Ne−εint /kT 

CONTRIBUTION OF INTERNAL DEGREES OF FREEDOM TO MACROSCOPIC 
PROPERTIES 

E = kT2 ⎛ ∂ lnQ ⎞ = kT2 ⎛ ∂ lnQtransQint ⎞ 
⎝⎜ ∂T ⎠⎟ N,V 

⎝⎜ ∂T ⎠⎟ N,V 

⎛ ∂ lnQtrans ⎞ ⎛ ∂ lnQint ⎞E = kT2 

⎝⎜ ∂T ⎠⎟ N,V 
+ kT2 

⎝⎜ ∂T N,V ⎠⎟ 

E = Etrans + Eint 
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A = –kT ln Q = –kT ln Qtrans Qint


= –kT ln Qtrans + –kT ln Qint


= Atrans  + Aint


Likewise: S = Strans + Sint 

because 
A = E − TS


S = E / T − A / T = E / T − kTlnQ / T


But: p = kT 
∂ lnQ 
∂V 

⎛
⎜
⎝ 

⎞
⎟
⎠
N,T 

for internal coordinates 

INTERNAL DEGREE OF FREEDOM OF AN ATOM 

Electronic Excitation: promotion of an electron to a higher energy orbital. 

He 1s2 → He 1s,2s
ground state first electronically excited configuration (1S and 3S states). 

Goal: Derive electronic molecular partition function 
qelec = ∑ e−εi /kT = ∑g(ε j)e

−ε j /kT


i ε j


electronic states allowed energies


εj ≡ energy of jth electronic energy level


g(εj) ≡ degeneracy — number of isolated-atom states with electronic 
energy εj 

Electronic energies and degeneracies are determined by atomic spectroscopy
experiments. Tabulated in tables such as NBS circular #467 by Charlotte Moore. 

no simple energy level 

= ptrans + pint = ptrans no V dependence 

qelec = g ε0( )e−ε0 kT + g ε1( )e−ε1 kT + g ε2( )e−ε2 kT +… 
formula except for 1e-

atoms H, He+, Li2+, etc. 
electronic molecular partition function 

ε0 ≡ ground electronic state — zero of energy (arbitrarily) set at ε0 = 0 
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ε1  kT usually. Contribution from first excited state and higher energy
states usually very, very small (except when L ≠ 0 and S ≠ 0, get spin-orbit splittings). 

FOR ATOMS 

Example: Electronic Excitation of a Hydrogen Atom – Rydberg States 

qint = qelec = g(ε0) 

1− 

Ry ≡ Rydberg constant = 2.180 × 10–18 J/molecule = 313.76 kcal/mol = hc(109737 cm–1) 

When n = ∞	 ε∞ = 313.76 kcal/mol = 13.60 eV

ionization potential of H atom


Units: 350 cm–1 = 1kcal/mol, k = 0.695 cm–1/K 

Degeneracy of a Rydberg energy level is g(εn) = 2n2 e.g. n = 4: 4s, 4p, 4d, 4f
[L-S terms: g(L,S) = (2L+1)(2S+1)] give 2L states, each with

degeneracy 2× (2L + 1) 

⎛
⎜
⎝ 

Calculate qelec for H atom … 
At T = 1000K, kT = 1.987 kcal mol–1 = 8.315 kJ mol–1 

kT( )e−εnn εn (kcal mol–1) g(εn) g εn

1
 ⎞
= Ry n ≡ principal quantum number (ε1 = 0, ε∞ = Ry)εn ⎟
⎠
n2 

1 0 2 2 

2 235.3 8 2.98 × 10–51 

3 278.9 18 1.98 × 10–60 

 

n 313.8 2n2 2n2(2.58 × 10–69) 
qelec = 2 + 2.98 × 10–51 + 1.98 × 10–60 + … = 2 
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Ratio of population of molecules with energy ε2 to energy ε1. 

nε2 g(ε2 ) ( 2.98 × 10−51 

= 1.5 × 10−51 

g(ε1) 
e− ε2 −ε1 )kT= = 

2nε1 

Only ground state contributes significantly to qelec and only ground state is populated
significantly. But sum includes ∞ # of nonzero terms! How do we justify neglect of
infinite number of positive, non-zero terms in qelect? Hint: 〈r〉n = a0n2. 

What about the nuclear partition function qnuc? 2I + 1. Nuclear spin degeneracy?
Excited states of nucleus? 

Changing the nuclear state generally requires huge energies, so as for the electronic case
there is only one nuclear energy level that must to be considered at normal temperatures. 

However, the nuclear ground state has an associated spin angular momentum denoted by
nuclear spin quantum number I. There is a degeneracy

 g(I) = 2I + 1 = qnuc. 
e.g. for H(I = 1/2) 2P J = 3/2 → F = 2,1 g = 5 + 3

J = 1/2 → F = 1,0 g = 3 + 1
total g = 12 = 2 × 2 × 3 

↑ ↑ ↑ 
S I L 

This should affect the entropy for I ≥ 1/2 and L ≠ 0 or S ≠ 0 since there are several 
available nuclear states at the lowest energy level. However, this contribution is not
generally included in qnuc because all hyperfine levels are equally populated except at
extremely low T. Thus there is no nuclear spin contribution to S except at extremely low 
T. In the case of thermonuclear reactions, I may change and qnuc must be accounted for. 
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INTERNAL DEGREES OF FREEDOM — DIATOMIC MOLECULES 

INTRAMOLECULAR POTENTIAL OF A DIATOMIC AB MOLECULE 

POTENTIAL 
ENERGY U(R)	 separated atoms in

their electronic 
ground states 

[Spectroscopists use X,A,B… a,b,c… instead of 0, 1, 2…]
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INTERNAL ENERGY LEVELS OF DIATOMIC MOLECULES 

ELECTRONIC ENERGIES — same situation as for atoms — no analytical expression
— consult tables in which these energies, as measured in a spectroscopy experiment, are
tabulated — denoted as ε0, ε1, ε2 … Degeneracy: (2S + 1)(2-δ0,Λ). 

Notation: 2S+1ΛΩ 

VIBRATIONAL ENERGIES — harmonic oscillator model used to approximate
intramolecular potential in solution of Schrödinger equation. 

vibrational energy levels given by … 

(ωe in cm–1 units)
εvib (v) = ⎝⎜

⎛ 
2
1 
⎠⎟
⎞ hν = ⎝⎜

⎛ 
2
1 ⎞
⎠⎟ hcωev + v + 

where v = 0,1,2 … vibrational quantum number 

ν (sec–1) = c/λ = frequency [3 × 1013 s–1 typical] (ωe = 1000 cm–1) 

ν = cωe 

ωe = 1/λ (cm–1) ≡ wavenumber [all spectroscopists use cm–1 units 
synonymously with Energy and
Frequency!] 

• need ωe or ν to calculate εvib(v) — get from IR spectroscopy expt. 

• vibrational frequencies have different values in each electronic state
because force constants are different 
(e.g. consider bonding↔antibonding orbital excitation in N2) 

v0 ≡ cωe
0 ≡  vibrational frequency in ground electronic state 

v1 ≡ cω1e ≡ vibrational frequency in 1st electronically excited state 

• degeneracy of each vibrational level = 1.

gvib = 1


• note that lowest energy is 1 hν or “zero point energy”.
2 
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[There are two common choices of the zero of vibrational energy, at v = 0 or at
v = –1/2.  We will return to this when we consider isotope effects on reaction
equilibrium constants.] 

ROTATIONAL ENERGIES — use rigid rotor approximation; bond length does not
change with rotational excitation. 

rotational energy levels given by … 

h2 (Βe in cm–1 units,
εrot (J) = J(J + 1)hcBe = J(J + 1) 

8π2µR2e 
B = 1 cm–1 typical)


[to get from cm–1 to E units,

multiply by hc]


where J = 0,1,2 … rotational quantum number [J can be 1/2 integer or integer
depending on whether there
is an odd or even # of e–.] 

Be ≡ rotational constant — property of molecule [always given in cm–1 units.] 

h h ⎡cm−1 ⎤= ⎣ ⎦Be = 
8π2µR2ec 8π2Ic 

↑ 

I = moment of inertia = µRe
2 for diatomics 

µ = 
mAmB reduced mass 

mA + mB 

• degeneracy of each rotational level = 2J + 1


gJ = 2J + 1


• rotational constants Be have different values in each electronic state 

Be
0 rotational constant in ground electronic state 

B1e rotational constant in first electronically excited state 

INTERNAL MOLECULAR PARTITION FUNCTION — qint — DIATOMICS 

GOAL: Obtain an expression for qint including all degrees of freedom 
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−ε n,vn ,Jn kT 
qint = ∑ g(n,vn, Jn )e ( ) 

(n here refers to electronic state, not
ε(n,vn ,Jn ) principal quantum number) 

sum over all internal energy levels 

Assume internal energies are separable and additive (not quite true): 

εint(n,vn,Jn) = εel(n) + εvib(vn) + εrot(Jn) 

This approximation (Born-Oppenheimer) is okay for separation of electronic from
internal degrees of freedom, but ωe and Be both depend on electronic state. But it is OK 
here because only the lowest electronic state usually contributes (except rare earths).
Separability of vibration from rotation okay for low vibrational energies. 

Because energies are additive, qint factors into terms for each electronic state 

qint = g0e
−ε0 /kT ∑ e−ε0,vib /kT ∑ g (εJ 0)e−ε0,rot /kT 

v0 J0 

+g1e
−ε1 /kT ∑ e−ε1,vib /kT ∑ g (εJ1)e−ε1,rot /kT +… 

v1 J1 

qint = q0,elq0,vibq0,rot + q1,elq1,vibq1,rot + q2,elq2,vibq2,rot + … 

qint = g0e
−ε0 kTq0,vibq0,rot + g1e

−ε1 kTq1,vibq1,rot + g2e
−ε2 kTq2,vibq2,rot +… 

usually only 1st term contributes significantly
kT 
 g0e

−ε0 kTbecause g1e
−ε1 

Only the ground electronic state contributes significantly except at extremely high
temperature or when electronic ground state has S ≠ 0. (“Multiplet states” have
low-lying Ω-components. Ω is projection of 


J  on body axis.) 

Need to find qrot and qvib!!! But usually only for the lowest electronic state. 
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