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5.62 Lecture #12: Rotational Partition Function.

Equipartition


Readings:	 Hill, pp. 153-159;
Maczek, pp. 47-53
Metiu, pp. 131-142 

motion where n is the number of atoms in the molecule. 

For a diatomic or a linear polyatomic molecule: 

3 TRANSLATIONAL degrees of freedom 

2 ROTATIONAL degrees of freedom 

3n–5 VIBRATIONAL degrees of freedom 

3n TOTAL degrees of freedom 

DEGREES OF FREEDOM 

A molecule with n atoms has 3n "degrees of freedom" or 3n coordinates to
describe its position and therefore has 3n ways of incorporating energy due to nuclear

For a diatomic molecule 3n – 5 = 1 vibrational degree of freedom 

MOLECULAR ROTATIONAL PARTITION FUNCTION — qrot — DIATOMIC 

εrot(J) = J(J + 1) hcBe for J = 0,1,2, … gJ = 2J + 1 

qrot = ∑ g(ε) e–ε/kT = ∑
∞ 
(2J +1) exp[–hcBe J(J+1)/kT]

J=0 
allowed rotational

 energies 

Question: How do you do the summation? Two cases … (Low-T limit case [next 
Lecture]) 

Case 1:εrot/kT  1 or hcBeJ(J + 1)/kT  1 
[More precisely, we want (E(J + 1) – E(J))  kT at E(J) ≈ kT.) 

rotational states are closely spaced in energy compared to kT
— since energy spacings are so close together, can consider 
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εrot as continuous and use Euler-MacLaurin Summation Formula (draw a
picture!) 

this case is the classical or high-temperature limit. 

n 1 

J
∑ 
=m
f J( ) = ∫m

n f(J)dJ + 
2 
[f(m) + f(n) ] + residue… 

so: 

∫ ∞qrot = 0 (2J +1) exp[–hcBe J(J+1)/kT] dJ + 
2
1 

[1 + 0] + … 

J = 0 J = ∞ 

substitute ω = J(J+1) thus dω = (2J+1)dJ 

qrot = ∫0 

∞ 
exp [−hcBeω / kT ]dω + 

2
1 +… 

∞−kT e−hcBeω kT 1 = 
hcBe 

0 + 
2 
+… 

⎞ = 0 − ⎛ −kT 1 
⎝⎜ hcBe ⎠⎟ 

+ 
2 
+… 

= 
kT 1 kT usually can ignore the 1qrot hcBe 

+ 
2 
≈ 
hcBe 2 

What happens for a 1∆ state where Jmin = 2 rather than 0? 

Hold on — One correction needed to qrot … 

SYMMETRY NUMBER ≡ σ ≡ # of equivalent orientations in space which leave
appearance of molecule unchanged — # of indistinguishable orientations in which
molecules can be found as a result of rotation. We divide by σ because otherwise 
we would be overcounting by counting indistinguishable orientations. 

A homonuclear molecule, O2, has σ = 2 because an end over end (half) rotation by
π does not alter the appearance of O2. 

The symmetry number is rigorously based on the nuclear spins. We’ll see the details
later. 

for hcBe  kTkT =So qrot σhcBe or εrot  kT 

revised 3/3/08 9:19 AM 



  

5.62 Spring 2008	 Lecture 12, Page 3 

where σ ≡ symmetry # 	 = 1 for heteronuclear diatomics
 = 2 for homonuclear diatomics 

Really this is qrot-nuc, but we’ll refer to it as qrot. 
hcBeDefine θrot = “rotational temperature”, θrotk 

(has units of K) 

So 
kT T = =qrot σhcBe σθrot 

for θrot  T 

Molecular Rotational Partition Function for Diatomics 

also written as … 

8π2IkcT h 2qrot = 
σh2 because Be = 

8π2Ic 
I = µRe

Let's go back and check whether dropping extra terms in Euler-MacLaurin series was a
good approximation … 

kT 1qrot σhcBe 
+ 
2 
+… = 

at T = 300K 
MOLECULE Be (cm–1) σ θrot (K) qrot = T/σθrot + 1/2 % error 

(neglect of
1/2) 

HCl 10.59 1 15.24 19.688 + 0.5 2.5 

CO 1.93 1 2.77 108.30 + 0.5 0.4 

I2 0.037 2 0.1065 1408.5 + 0.5 0.04 

As Be becomes smaller or equivalently as θrot becomes smaller compared to T,
dropping extra terms becomes better approximation;

also, discrete to continuous approximation becomes better. 
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Contributions of Rotation to Thermodynamic Functions for εrot  kT 

N 

= 
kT → Qrot = (qrot )N = 

⎛ kT ⎞ 
qrot σhcBe ⎝⎜ σhcBe ⎠⎟ 

= −kTlnQrot = −NkTlnqrot = −NkTln 
⎛ kT ⎞

Arot ⎝⎜ σhcBe ⎠⎟ 

⎛
 ⎞
∂A
 kT
⎛
⎜
⎝


⎞
⎟
⎠


⎛
 ⎞
∂
 NkTln
 = 0
prot = − ⎜
⎝


⎟
⎠


⎜
⎝


⎟
⎠


= 
∂V
 ∂V
 σhcBeN,T N,T 

because ε does not depend on Vrot 

Erot = kT2 ⎜
⎛∂ lnQrot ⎞⎟ = NkT2 ∂ ln qrot 
⎝ ∂T ⎠N,V ∂T 

= NkT2 ∂ ln T + nkT2 ∂ ln(k / σhcBe ) = NkT2 ⎛⎜ 1 ⎞⎟ + 0 
∂T ∂T ⎝T⎠

average rotational energy of a diatomic molecule 

Erot = NkT for θrot  T or εrot  kT (not 12 NkT; why?) 

a "quantum" result (but based on the approximation
of replacing a sum by an integral) 

CLASSICAL EQUIPARTITION RESULT FOR ROTATIONAL ENERGY 

⎛
⎜
⎝
2 1 
2 
NKT


⎞
⎟
⎠

= NkT 

Each degree of translational and rotational energy contributes (1/2)kT to total 
energy. For a diatomic molecule, there are 2 rotational degrees of freedom [Why 2?]. 

– Therefore, 2(1/2 NkT) = NkT.  This is why CV for monatomic gases is ~(3/2)R and for
most diatomic gases at moderate T is ~(5/2)R! 

Quantum and classical approach lead to same result for rotation at 300 K.  Why?
Because rotational energy levels are very closely spaced compared to kT. We calculated 
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qrot by approximating a sum over energy levels as an integral over energy levels.
Rotational energy levels are so closely spaced that they "look" continuous compared to
kT at room temperature for most molecules. Erot does not depend on the properties of the
molecule in the classical limit! 

“Quantum” result for Cv 

CV
rot = 


⎛
⎜
⎝

∂E
⎞

⎟
⎠


⎞
⎟
⎠
∂T
 N,V  = Nk 

∂T 
∂T 

⎛
⎜
⎝ 

= Nk =  R if N = Na (or CV
rot  = nR)

 for ε  kT or θ  T (εrot needs to be better defined, see below)rot rot 

1. More about high temperature limit, which is the requirement that permits the sum, 

∞ 

qrot = ∑ g ε J )e−hcBJ (J +1) kT ,( ( )
Jmin 

to be replaced by an integral, 

(qrot = ∫J
∞ 

min 

dJ (2J + 1)e−hcBJ J +1) kT + 
2
1 
⎡⎣(2Jmin + 1) + 0⎤⎦ . 

It is necessary that ∆εrot  kT at εrot ≈ kT. The rotational energy level spacing must be
small relative to kT. 

[( )(J + 2 ( )] 
= hcB2 (J +1). 

∆εrot (J ) = hcB J +1 ) − J J +1 

This spacing must be small relative to kT when εrot = kT 

(εrot = hcBJ J +1) = kT 

Thus hcBJ(J+1)  hcB2(J + 1), which requires that 

J   2. 
This means that we want 

kT  εrot (J = 2) = 6hcB. 

kT   6hcB is the requirement that specifies when it is OK to replace sum by integral. 
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2. Some useful stuff concerning fractional populations in rotational levels. 

A. fraction of population in J-th level 

fJ =
(2J + 1)e

T 

−θrot J ( J +1) T 

σθrot 
hcB =θrot k 

B. Most populated J 
dfJ = 0 = 
dJ 

2e−θrot J (J +1) T − 2J +1( )2 θrot T( )e−θrot J (J +1) T 

qrot 

Thus 

2 = (2J +1)2 θ
T
rot 

⎛ 2T ⎞1/2 

⎟ −1 

= .Jmax 
⎝
⎜θrot ⎠

2 
For T / θrot = 100 

Jmax = 6.5 

C. Fractional population in most populated J level 

⎟
⎠

⎤ 
⎢
⎣ 
⎜
⎝
⎟
⎠

⎤⎜
⎝⎤ 

⎥⎦ 

1/2 
1/2 1/2 

⎜ −1⎟⎜ ⎟ 

T θrot 
max For T θrot = 100 fJ = 0.085. 

D. Fractional population in J = 
T . This is a simple-minded way of asking
θrot 

about the population of the “last” thermally accessible level. 

⎛ ⎡⎛⎞ ⎞2T 2T⎡−θrot 2T 
θrot 

⎡ 
⎢⎣


⎢
⎣

⎥
⎦

⎥
⎦4T θrot θrot e 

⎞
⎟
⎠ 

1/2 ⎞
⎟
⎠ 

1/2 2θrot ⎛
⎜
⎝


⎛
⎜
⎝

θ
e−1/2 = 0.85=fJmax 

≈
 .

T
 T
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fJ =T θrot 
= 
⎝⎜ ⎠⎟ 

e 
⎛ T ⎞ ⎛ T ⎞ θrot ⎛ 2 T + 1⎞ 

−
⎝⎜ θrot ⎠⎟ ⎝⎜ θrot 

+1 
⎠⎟ T 

⎛ T ⎞θrot = 2e 
−
⎝⎜ θrot 

+1 
⎠⎟ .

T θrot 

For T / θrot ≈ 100 
fJ =T θrot 

= 2e−101 = 3 × 10−44 . 

This is a very small fractional population. It would be more appropriate to ask for
the fractional population of the J′ value for which 

J ′ 

∑(2J +1) = T θrot , 
Jmin 

because this sets the total number of significantly populated J, MJ levels equal to 
qrot. Using 

J ′ 

∑(2J +1) = (J ′ +1)2 

J =0 
(

and T/θrot = 100, we get J′ = 9 and f = 
19e−9 10) /100 

= 0.077 .J ′=9 100 
– Low-T limit results for E  and CV next time. But what do you know without any 

– equations about E  and CV in the limit T → 0K? 
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