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5.62 Lecture #15: Polyatomic Molecules: Rotation and
Vibration

Reading: Hill, pp. 151-153, 156-159
Maczek pp. 53, 58-63

VIBRATIONAL CONTRIBUTIONS TO MACROSCOPIC PROPERTIES (CONT.)

High Temperature or Classical Limit of (E — E;),,: T> 0,
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This quantum result yields the same value for (E-E,),;, as the classical approach when T > 6;,
or &, < kT. Classical equipartition principle says that each vibrational degree of freedom
contributes NKT to total average energy (but ony if T > 0,;,,). However, T > 6, is a condition
that does not obtain very often.

Other Thermodynamic Functions:
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(A—Eq),, =NKkTIn(1-¢™) x = 0,,/T, NkT = nRT
m =n(1-e™) another Einstein function
nRT
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T T
This expresses the fact that entropy cannot depend on an arbitrary choice for the zero of

energy.
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POLYATOMIC MOLECULES — INTERNAL DEGREES OF FREEDOM

3N degrees of freedom — 3N independent coordinates needed to specify positions of N
atoms in a molecule

diatomic or linear polyatomic non-linear polyatomic
translation 3 3
rotation 2 3
vibration 3N-5 3IN-6
3N 3N

Example: Vibrations of CO,
N=3 3N =9 total degrees of freedom

linear molecule = 4 vibrational degrees of freedom
4 vibrational modes

revised 3/10/08 2:23 PM
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sysmtrr;it;ic <_Q)> @ @_> frequency
bend C? @ ? Vap
degenerate
bend @ @ Q Vi g

antisymmetric @ @ @
stretch Vs

Example: Vibrations of H,LO N =3 3N =9 deg. of freedom

nonlinear molecule = 3 vibrational degrees of freedom
l 2
symmetric bend antlsymmetrlc
stretch stretch

POLYATOMIC MOLECULES — INTERNAL MOLECULAR PARTITION FUNCTION

€, /KT
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MOLECULAR ROTATIONAL PARTITION FUNCTION — LINEAR POLYATOMIC

MOLECULE

2 rotational degrees of freedom

2
kT T _ 8n’IkT << kT
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same form as for diatomic molecule

6 =1 linear molecule with no symmetry HCN, NNO
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0 =2 linear molecule with a center of symmetry CO,, C,H,

MOLECULAR ROTATIONAL PARTITION FUNCTION —NON-LINEAR POLYATOMIC
MOLECULE

3 rotational degrees of freedom - 3 princpal axes of rotation, each with a different I and each
with different €

Tot*

- o
T < &

Sum over all rotational states for each rotation (for 0, < T):

Cn? (et N (sntrhr | (snirar |
th_ o hz hz hz

rotational partition function for each axis

8 QmkT)*(1,1,1.)"7 T

Gh3 092/26,11/291‘/2
where
o, = 1A _ _h* and A ,=—1
Yk 8n’Lk ¢ 8nllc
a 2
0, = heB, _ 2 and B =—12l
k  8m’Lk 87’ c
[but, for prolate symmetric top
B = AK?+ 355041 -k2] (B =C)

this makes the identical role played by a, b, and ¢ axis rotations in q,,, seem surprising.]
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o=symmetry number = no. of different ways of achieving, exclusively, by
rotation, a given spatial orientation that differs only in labels on identical nuclei
(without breaking any bonds).

e.g. HCCl: 0=3 CH,: 6=4 CHy: 0=12
Pictures?

For both linear and nonlinear polyatomic molecules, the high temperature limit or classical
limit for q,,, is okay most of the time: €, < kT.

Tot

MOLECULAR VIBRATIONAL PARTITION FUNCTION — POLYATOMIC MOLECULES

Each vibrational mode is treated separately. Energies of each vibrational mode add, so
the partition function factors into a product of the sums over all vibrational energy levels for
each vibrational mode. The sum over vibrational energy levels results in an analytical
expression as for a diatomic. Energy levels are calculated within the harmonic oscillator

model. Each mode i, with frequency ®,, is assumed to be independent of excitation in the
other modes. Two assumptions: harmonic and uncoupled.

n,

Quib =H 1_ e—hcw T hco /KT _H oo b/T

i=1

product is over all vibrational modes
where i = i" vibrational mode n, = # of vibrational modes

1y o~hew; /2KT l e‘wb 2T

Qvib =H 1Z ook _H O T e /T

i=1

FINISHED! Now we can calculate all contributions, translational and internal, to
macroscopic properties of all gas phase molecules.
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