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Einstein and Debye Solids 

Reading: Hill, pp. 98-105, 490-495 

The Einstein (quantum) model (all vibrational modes have the same frequency) gave 
much better agreement with experiment than the Dulong-Petit (classical) model 
(equipartition). But as T decreases, the Einstein model CV decreases too fast relative to 
the experimentally observed (approximately T+3 dependence) behavior of CV. Perhaps it 
would be more realistic to allow the vibrational frequencies to follow a plausible, 
computationally convenient, but non-constant probability distribution, ρ(ν) 

Debye Treatment 

Debye derived an improved model for the thermodynamic properties of solids by 
assuming that the distribution of normal mode frequencies is equivalent to that for sound 
waves. 
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Just as the degeneracy for a given speed state is proportional to c2 in the kinetic 
k
~

theory of gases (as you'll see later in 5.62), the number of ways of picking with 
magnitude k = | k

~
| is proportional to k2. 
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So ρ(ν) ∝ k2 ∝ ν2 

This figure is supposed to show a spherical shell of radius 
 

!
k

|k| and thickness dk. The 
number of states with |k| between |k| and |k| + dk is proportional to the volume of this 
shell, 4π|k|2. 

Problem: What is the distribution of acoustic frequencies in an elastic solid? We are 
interested in the 3N lowest frequencies. 

Solution: Find the harmonic frequencies which satisfy the boundary condition that the 
displacements are zero at the surface of a crystal of volume V. The wave equation for 
this problem is very similar to the Schrödinger Equation for a particle in a 3D infinite 
cubical well. 

Consider the initial wave at t = 0, with displacements as function of position, x: 

Φ0(x) = Φ(x,t = 0). 

At t ≠ 0, the initial wave has moved in the +x direction by vst, where vs is the speed of 
sound in this medium 

Φ(x,t) = Φ0(x - vst). 

Making the harmonic approximation: 
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Find the values of ν for which Φ(x,t) = 0, where x is at the surface of the crystal of 
volume, V. 
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Schrödinger Equation: 
 

!2" x, y, z( ) =
#2m$

!
2

" x, y, z( ).
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Now use the required values of {ε} to solve for allowed ν's:
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So now we know how ν depends on the number of standing waves in each of the three 
crystal directions. We want to know the density of vibrational modes as a function of 
frequency, ρ(ν), but it is easier to derive the density of modes as a function of n, ρ(n), 
where 

n
2
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This is the equation for a sphere. So the number of modes between n and n + dn is given 
by the volume of one octant (nx, ny, nz, and n are all positive) of a spherical shell of radius 
n and thickness dn 

!(n)dn = 1

8
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We want ρ(ν) 
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dn
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To find the value of the Jacobian, dn
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This is the frequency distribution function that goes into the Debye model. 

So we have a physically reasonable model for the density of vibrational states as a 
function of frequency, ρ(ν). 

But Debye had one more trick up his sleeve before inputting ρ(ν) to a statistical 
mechanical calculation of macroscopic thermodynamic properties. 

There cannot be an infinite number of modes; only 3N–6 ≈ 3N. So Debye cut off the 
mode distribution arbitrarily at νmax to give the correct number of modes. 
ρ(ν) = Aν2 where A is determined by Debye's cutoff at νmax 
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NOTE: We still don't know what νmax is, only that the mode distribution is normalized to 
this parameter. 
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Now calculate some bulk properties: 
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Integrate by parts 
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Check high and low temperature limits of C VDebye : 

high T limit 
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(agrees with classical and Einstein treatments) 

low T limit 
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(Note the correct T3 behavior that agrees with experiment) 

Note:	 The Debye T3 heat capacity law is in 
excellent agreement with actual data at
all temperatures! 

OTHER THERMODYNAMIC FUNCTIONS CALCULATED IN DEBYE MODEL 
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Integrate by parts:
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NOTE: The Debye model does not fit the phonon mode distribution of actual solids
terribly well, but Cv is not too sensitive to these differences. It works well for insulating 
crystals but fails badly for metals. What is special about metals? Also, fails near 
melting point of solid because the harmonic approximation fails. Why? Large 
displacements are necessarily anharmonic. 

In the actual ρ(ν), what are the resonances at high ν? 
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