
MIT OpenCourseWare 
http://ocw.mit.edu 

5.62 Physical Chemistry II

Spring 2008


For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


5.62 Spring 2008 Lecture #24 Page 1 

Free Electron Theory of a Metal 

Readings: Hill, pp. 441-444 

We know how to think about the electronic structure of a molecule — we know the 
orbitals, their energies, their occupancies — but with a metal, which we treat as one giant 
molecule of N atoms, how do we handle the large number of orbitals and electrons?
Need to invent new ideas like the density of electronic states which is # of states/unit 
quantum number or # of states/unit energy. 

FREE ELECTRON MODEL 

Many metals (Na, K, Rb, Li, Au, Ag, Cu) have one unpaired s electron per atom 
that acts “free.” The interaction with the ion core and other electrons is sufficiently weak
to justify building a model in which these interactions are ignored. The potential energy
is zero everywhere except ∞ potential at the ends of the box. 

Equation of motion for particle in a box 
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Solutions for cubic box of length L 
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Define wavevectors in terms of quantum #'s (because, in the solid state, wavevectors are
more convenient for counting states than quantum numbers). 

 

kx =
!

L
nx ky =

!

L
ny kz =

!

L
nz

k2 = kx
2
+ ky

2
+ kz

2

E =
!
2k2

2m

Now, a is the lattice constant 
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and 

 ka( )2
= nx

2!2 a

L

"
#$

%
&'

2

+ ny

2!2 a

L

"
#$

%
&'

2

+ nz

2!2 a

L

"
#$

%
&'

2

Now, it is easy to see that because a/L  1, ka can be treated as a quasi-continuous 
variable, thus the allowed values of E also vary continuously. 

Really a very large number of points

but allowed values of ka and E are

very closely spaced.

Large degeneracy — all states with same value of (ka)2 or same value of nx
2
+ ny

2
+ nz

2

will have the same energy. For small values of nx, ny, nz, it is possible to enumerate the 
degeneracy, but not so for large values — and we will need large values because e–'s are 
fermions and each state may be occupied by at most one fermion. So the answer is to 
calculate the density of states. 

DENSITY OF STATES (# of states per unit wavevector) 

Surface area of sphere with radius k is 4πk2 

Each state on the surface has same value of k or E 
Spherical shell of radius k and thickness dk has volume 4πk2dk 
How many different wavevector states are there in this volume? 

(π/L)3 = volume of one state because each ki has length π/L. [Where does this k-space
volume come from? There must be N half wavelengths per L in order to satisfy boundary
conditions: L = N(λ/2). But kN = 2π/λN. Thus kN = N(π/L). k changes in steps of π/L, 
thus the k-space volume associated with each allowed value of kL,M,N is (π/L)3.] 
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Number of states with range of k between k and k + dk is 
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divide by 8 to include only the positive octant of spherical

shell because kx, ky, and kz must all be positive.

DENSITY OF STATES (# of states per unit energy) 

replace k2 and dk in above equation for dN: 
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This is the number of states with E in the range between E and E + dE. 
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