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Kinetic Theory of Gases:


Maxwell-Boltzmann Distribution


“Collision Theory” was invented by Maxwell (1831 - 1879) and Boltzmann (1844 

- 1906) in the mid to late 19th century. Viciously attacked until ~1900-1910, when 

Einstein and others showed (1910) that it explained many new experiments. It is key to 

describing collisions in dilute gases which kinetic theory relates to transport properties 

such as diffusion and viscosity. Collision Theory provides an alternative to standard 

Statistical Mechanics for the computation of thermodynamic quantities. 

In Statistical Mechanics, we make simplifying assumptions about energy levels, 

degeneracies, and inter-particle interactions in order to compute Q(N,V,T). 

In Collision Theory, we start with the Maxwell-Boltzmann velocity distribution 

for a gas, then compute everything from Newton’s Laws. Stoss-zahl ansatz: each 

collision is independent of previous events. Get a classical mechanical picture for the 

properties of gases: 

* pressure 

* transport (mean free path, thermal conductivity, diffusion, viscosity, electrical 

conductivity) 

* reactions. 

We begin with the usual independent, distinguishable particle kinetic energy distribution 

function. 

Maxwell-Boltzmann Distribution Function 

For a single free particle the distribution of energy is proportional to the kinetic 

energy. Thus: 
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The velocity is a three dimensional vector with components along the Cartesian 

coordinates: 
 

!
v = vx,vy,vz( ) . The values of the three velocity components are 

uncorrelated and each velocity component takes on values between !" to +" . 
 
F
!
v( ) is 

the probability density for finding that a gas molecule has a velocity in the range 

. This probability distribution must be properly 

normalized. 
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where C is the normalization constant. This involves three Gaussian integrals of the 

form: 
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We find the normalization constant to be . The normalized Maxwell 

Boltzmann distribution for molecular velocities is: 
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This is a three dimensional probability density. Since the gas dynamics is isotropic (no 

favored direction) we should expect, and indeed find, that this three dimensional 

distribution is the product of independent probability distributions in the three Cartesian 

directions: 
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where the normalized one-dimensional distributions are of the form: 
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In the above formula u denotes one of the 
velocity components. 

Note well: the MB distribution is strongly
peaked around u = 0. The width of the 
distribution is related to the square root of 
the temperature. 

Full Width at Half Maximum (FWHM) of f(u) 
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Distribution of molecular speed. The speed (a quantity distinct from u) of a molecule in the 

gas is the magnitude of the velocity vector: 
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We can obtain an expression for the probability distribution of the speed by transforming the 

3-D distribution into a distribution of the magnitude of the velocity vector (averaged over 

direction). This is accomplished by use of spherical coordinates for the velocity vector: 

vx = vsin!cos",   vy = vsin!sin",   vz = vcos! . 

In spherical coordinates the 3-D differential volume element is: 
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Thus we have: 
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The ranges of the variables are:


The distribution of the speed is found by integrating over angles. The result is:


0 < v <!,   0 < " < #,   0 < $ < 2# . 
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The speed distribution is drawn below. We also give a sketch of how the distribution shifts 

– it broadens and moves to higher speeds - as the temperature increases. 

We shall determine several characteristics of the speed distribution 

!1! The most probable speed: The most probable speed v̂ is the speed which has the 

maximum likelihood. This speed is determined from the condition !h v̂( ) = 0 . 
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!2! The average speed: The average speed v is determined from the formula: 
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!3! The Root Mean Square (rms) speed: This quantity is determined from the formula: 
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4.07(T/m)1/2m/s 
4.59(T/m)1/2m/s 
4.98(T/m)1/2m/s 

@ 300K 

shutter, Time-of-Flight (TOF) distribution 
rotating sectors 

effusive molecular beam

supersonic jet (skimmed)


species m v

N2 28 4.8 ! 102m/s = 5 ! 10
4
 cm/s

H2 2 1.8 ! 103m/s

Hg 201 1.8 ! 102m/s
only a factor of 10

for a factor of 100

in mass

How is velocity distribution measured? 
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