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Kinetic Theory of Gases – Transport Coefficients 

We begin by considering the important case of diffusion. Diffusion is a very 
important transport property for chemists because it describes the mass transport 
necessary to bring molecules into sufficiently close proximity for chemical reactions to 
occur. Imagine a one component gas in a fixed volume at fixed T and p but with possible 
(slight) variation in the density ρ(z,t) in the z-direction at time t. 
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We imagine 3 planes at some position z 
separated by the mean free path and 
enquire about the simplest description of

jz
mthe net flux of particles in the z-

direction. The flux has units of mass per 
unit area per unit time. 

At the microscopic level, over a distance on the order λ, a particle trajectory is 
likely to be interrupted by a single collision that deflects its path to a different height z, 
which is in a re

 
!jz
m (z, t)

gion of different density. We make the assumption that the microscopic 
flux, denoted , has the form of local effusion flux determined in Lecture #31: 
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v

4"
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With this form of the flux, we can determine the net flux of particles at the average z-
position moving in the positive z-direction: 
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The mean free path λz may be considered small so we expand the density around the 
middle position: 
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Accordingly, the net mass flux is: 
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The mean free path in the z direction can be taken as !
z
= ! cos" . The average mass 

flux is given by the angular average: 
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The angular integration gives the value 2π/3 so we obtain the result: 
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Several approximations have been made. First, we have used a macroscopic 
quantity, the density, that is defined for many particles, on a microscopic scale to 
describe the frequency of collisions between a pair of particles. Second, we have 
assumed that the local velocity and density are uncorrected. This is valid in dilute gases. 
Third, we have been a bit sloppy about taking the z component of a straight-line 
trajectory. Fourth, we have no basis for choosing the z-interval to be exactly 2λz; it could 
be slightly smaller or larger. So at best, our results only apply for dilute gases and they 
will yield a numerical coefficient uncertain by a factor of ~2. 

Since the diffusion coefficient is defined as the constant of proportionality 
between the flux and the spatial density gradient that causes the relaxation we obtain: 

D =
!v

3
. 
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For hard spheres we know ! =
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There will be deviations from this hard sphere expression if the particle 
interaction is described by a more realistic potential. At low density, this deviation will 
occur at low temperatures when the relative velocity is lower and hence more strongly 
samples the repulsive or attractive regions of the potential. Even for hard spheres D will 
deviate from 

!"1

ρ–1 behavior at higher density because the m.f.p. will decrease more strongly 
than as the density increases. 

Thermal conductivity The situation with respect to energy transport is very 
similar 
!e(z, t) = c

v
!T(z, t)

to that for mass transport. The local energy density is given by:
where e(z,t) is the local energy per unit mass of the gas, ρ is the gas 

density, cV is the heat capacity per unit mass of the gas, and T is temperature. Therefore 
the microscopic energy flux is 

 

!jz
e (z,!, t) =

v

4"
cos!T(z, t)e(z, t) =

v#cv
4"

cos$T(z, t) . 

The superscript “e” specifies energy flux density. 

In exact analogy to the procedure followed for mass transport we approximate: 
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so that for small m.f.p.: 
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The average over angles gives the same numerical factor as before (2π/3), thus 
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Accordingly, the thermal conductivity is found to be: 

! =
v"c

v
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Again the numerical factor cannot be trusted. The important prediction is 

! = D"c
v
. 

Viscosity. The final example is the transport of momentum. In this case, the physical 
quantity of interest is the x-component of momentum because the shear force is applied 
in the x direction. We have for the microscopic momentum (p) flux: 

 

!jz
p (z, t) =

v!

4"
cos#vx(z, t)

where ρ is the mass density and vx(z,t) is the local velocity in the gas in the direction of 
the shear force. Balancing this microscopic flux gives: 
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and for small m.f.p. after averaging over angles exactly as before, 
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The shear viscosity coefficient is the constant of proportionality between the momentum 
!v

x

!z
z, t( )flux jz

p (z,t) and the gradient in vz in the direction (x) of the shear force, . Thus, 

the shear viscosity is given by: 
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where d is the diameter of a hard sphere molecule. 
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An important prediction of kinetic theory is that the shear viscosity of a dilute gas does 
not depend on density. 

We have relationships between the transport coefficients: 
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v
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= D.

Macroscopic conservation equation. We have obtained results for three transport 
equations; for mass, momentum, and energy. These equations are: 
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We can use these expressions for the flux to obtain conservation equations for the 
associated quantities of mass, energy, and momentum. 

Each of these flux equations is of the form jz = !L
"Y
"z

#
$
%

&
'
( . Let us imagine the build up of 

the quantity Y in a volume element due to the passage of flux. The build up of Y in the 
volume element in a time dt equals the net passage of flux through the one face of the 
volume element in time dt. 

jz (x, y,z ! "z, t)

jz (x, y,z + "z, t)

dA = dxdy

dV = 2dA"z 

dV Y(x,y,z, t + dt)!Y(x,y,z, t[ ] =

dAdt jz (x,y,z ! "z, t)! jz (x,y,z+"z, t)[ ]

Expanding for small dt and Δz gives: 
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Thus the transport equations give rise to macroscopic relaxation equations that relate 
changes in conserved quantities in space and time. 
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Conservation 
law 

Conserved 
quantity - Y 

Flux equation Transport equation 

Mass 
diffusion 

ρ(z,t) 

Momentum ρvx(z,t) 

Energy ρcvT(z,t) 

These transport equations that have the form of: 
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are called “diffusion equations”. For example Fick’s law for mass diffusion has the form: 
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This equation has a fundamental solution: 
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for the initial conditions !(z, t = 0) = !
0
"(z # z

0
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Evidently dz!(z, t) = !0
"#

+#

$ because mass is conserved in the diffusion process. 
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