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Rates of Unimolecular Reactions: RRKM 

Consider a unimolecular reaction: A → products 

isomerization CH3NC→ CH3CN 

decomposition (with barrier to recombination) C2H5Cl→ C2H4 + HCl 

In order to occur, these reactions must overcome a barrier, E0. They can be activated to 
E* > E0 by collision, overtone pumping, infrared multiphoton excitation, optical
excitation followed by Internal Conversion, or Stimulated Emission Pumping. 

A molecule becomes activated, either by absorption of a photon or by a collision. The 
activated molecule has a definite E and J. If E > E0, where E0 is the energy of the zero-
point-energy-dressed barrier for the unimolecular process: 

We want to predict the rate of the reaction. 

reaction coordinate

A(bound)

v = 0

E0 products

E*

Standard mechanism (from 5.60) 

activation A + M → A* + M k1 

deactivation A* + M → A + M k–1 
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irreversible decay into products A* → products k2 

Steady state for A* 

d A*[ ]

dt
= k

1
[A][M]! k

!1
[A*][M]! k

2
[A*] = 0

[A*]
SS
=
k
1
[A][M]

k
!1
[M]+ k

2

 

d[products]

dt
= kuni[A] = k2[A*]

=
k1k2[A][M]

k
!1[M]+ k2

" kuni =
k1k2[M]

k
!1[M]+ k2

=
k1k2 k

!1

1+ k2 k
!1[M]( )

use this form of kuni  below
! "#########

“Unimolecular” rate is actually pressure-dependent. 

kuni p !"( ) # k
"
=

k1k2

k
$1

kuni p ! 0( ) = k1[M] # %& a collision frequency( )

p ~ 1 bar log p

log
kuni

k!

"

#
$

%

&
'

( k! =
k1k2

k)1

( kuni(p * 0) = k1[M] = +,

kuni =
k1k2[M]

k)1[M]+ k2

But A* really is produced in a distribution of energies of activation and k2 will be E-
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dependent. We will have to integrate over E. 

A + M → A*(E, E + dE) + M 
A*(E, E + dE) + M → A + M 

A*(E) → products 

Assume that k–1 is not E-dependent. Thus 

dk1 

k–1 

k(E) 

dkuni E,E + dE( ) =
k2(E) k!1( )dk1

1+ k2(E) k
!1[M]( )

kuni =
E0

!

"
k2(E) dk1 k#1( )

1+ k2(E) k#1[M]( )

The k–1 relaxation converts the E, E + dE region of activated states into a steady-state 
distribution of states P(E). 

E

E0

P(E)

v = 0

dk1

Replace dk1/k–1 by P(E)dE and replace k–1[M] (the deactivation frequency) by ω 
(different from kuni(p → 0) ≡ω′). 

kuni = dE
E0

!

"
k2 (E)p(E)

1+ k2 (E) /#

but since k2 (E) = 0 for E < E0

kuni = dE
0

!

"
k2 (E)p(E)

1+ k2 (E) /#

At high pressure ω→∞ and the integrand simplifies to 

revised 4/24/08 11:40 AM 



5.62 Spring 2008 Lecture #36 Page 4 

k∞ = ∫ dE k2(E)p(E) 

How do we compute k2(E)? RRKM. 
Non-Lecture 

Some notation. 

E = E+ + E0 + Eactive 

E is total energy, E0 is the energy of barrier (zero-point dressed), E+ is the amount of 
energy not in the active mode, and Eactive is the amount of above-barrier energy in the 
active mode. 

We are doing a microcanonical calculation so we want to know how many energy levels
there are at total energy E where Eactive ≥ 0, W†(E). 

We want to compare this total number of states that will react to the total density of states 
at energy E. This ratio 

W
†
(E)

!(E)

has units [#]/[#/E]. If we divide by h, we get a quantity that has units of t–1. W
†
(E)

h!(E)
has 

the correct units for a unimolecular rate constant. Why h–1? 

W
†
(E) = dE+!

†
E+( )

E+ =0

E+ =E"E0#

When E+ = 0, all of the energy is in the active mode. When E+ = E – E0, Eactive = 0 thus 
there is no extra energy in the active mode. ρ†(E+) is the density of states when there is 
energy E+ in the n – 1 stable modes. 

Thus we need to compute ρ†(E+) and then integrate it to obtain W†(E). We also need to 

know ρ(E).


A Simple model.


Assume all modes, including the active one, have the same frequency, ν.


There are s modes. s is an integer


E = jhν j is an integer (total energy)
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E0 = mhν m is an integer	 (energy required in active mode to
get over barrier) 

want :
probability that special oscillator has !  m quanta

total # of ways of distributing j quanta

How many ways can j indistinguishable quanta be distributed into s indistinguishable 
modes? Represent problem by dots • and partitions |. 

one • for each quantum, for partitions between s modes, |,
need j indistinguishable • ’s need s–1 indistinguishable partitions 

From combinatorics, we know 

! j,s( ) =
j+ s "1( )!

j! s "1( )!
.

This is the number of energy states at E = jhν, thus 

! E j( )( )dE =" j,s( )dj

! E j( )( ) =
dj

dE
" j,s( ).

We want to derive both W(E) and ρ(E) from Ω(j,s). First we compute W(E), which is a
total number of states at or below E obtained by integrating the density of states 

W(E) = d !E
0

E

" # !E( )

thus 

! E( ) =
dW

dE
=
dW

dj

dj

dE
=" j,s( )

dj

dE

dW

dj
=" j,s( ) =

j+ s #1( )!

j! s #1( )!
.

Also, since E = jh!,!
dj

dE
=
1

h!
.

So what is W(E)? Demonstrate that 

revised 4/24/08 11:40 AM 



5.62 Spring 2008 Lecture #36 Page 6 

so all is well! 

W(j) =
j+ s( )!

j!s!
by showing that dW

dj
has the required value. 

dW

dj
=

W(j)! W(j!1)

j! ( j!1)
=

W(j)! W(j!1)

1

definition of

derivative

"

#
$

%

&
'

=
( j+ s)!

j!s!
! ( j+ s !1)!

( j!1)!s!

=
( j+ s)!! j( j+ s !1)!

j!s!

=
( j+ s)( j+ s !1)!! j( j+ s !1)!

j!s!

=
s( j+ s !1)!

j!s!
=

( j+ s !1)!

j!(s !1)!
=( j,s( )

Now, use this simple model to compute k(E) = W
†
(E)

h!(E)
.


Need m quanta in active mode, thus j-m quanta in s–1 inactive modes.


W†(E) =
j!m + s !1( )!

( j!m)!(s !1)!

Now compare to j quanta in all s modes:

"(E) =
1

h#

( j+ s !1)!

j!(s !1)!

k(E) =
W

†
(E)

h"(E)
= #

( j!m + s !1)! j!

( j!m)!( j+ s !1)!
= #f( j,m,s)

s-1 modes

j-m quanta

s modes

j quanta

! 1 in limit j ! m, j ! s

k(E) is slower than the constant vibrational frequency for all modes, by the simple factor 
f(j,m,s). 

 

In the limit s! j and j!m " 1 (near threshold),

k(E) #$
s! j!

1! s+m( )!
" $

j!

s j!1
" $

Improvements 
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Rabinovitch W†(E) =
E + aEz.p.( )

s

s! h!i

i=1

s

"

Classical Eall modes not equal frequency

a is an empirical fudge factor 

a =1!"w E Ez( )

" = s !1
s

#2

# 2

w = 5.00
E

Ez

$

%
&

'

(
)+ 2.73

E

Ez

$

%
&

'

(
)
1/2

+ 3.51
*

+
,

-

.
/
!1

0.1<
E

Ez
<1

w = exp !2.4191 E

Ez

$

%
&

'

(
)
1/4*

+
,

-

.
/ 1<

E

Ez
< 8

Better Still: Beyer-Swineheart, Even better: direct count 

Return to problem of computing kuni(T) from kuni(E,J). 

A+M
k1

k
!1

" #"$ "" A*+M

A*
k2" #" products

Note that the energy in the activated complex is E‡ = E* – E0 = Evib + Erot – E0 

kuni = 0

!

" k2(E*)P(E*)

1+ k2(E*) /#
dE *

E* = Evib +Erot

P(E*) = P(Evib )P(Erot ) =
$(Evib )e

%Evib kT

qvib
* ,A *

$(Erot )e
%Erot kT

qrot
* ,A *

kuni = 0

!

"
0

!

" k2 Evib +Erot( )P(Evib )P Erot( )

1+ k2 Evib +Erot( ) #
dEvibdErot

Now evaluate k2(Evib + Erot). 
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