
I. Experimental Evidence for Quantum Mechanics 
Quantum mechanics (QM) is a tool that was invented to explain 
experimental results.  It is nothing more and nothing less than that.  
The utility of QM is therefore based entirely upon its ability to predict 
and explain experimental results, and by this measure it is a 
phenomenal success.  There has yet to be an experiment of any type 
that violates the basic principles of QM.  Thus, to begin with, we 
should discuss some of the experimental results that illustrate key 
principles of QM.  Since this is a chemistry course, we will slant our 
perspective towards chemically relevant experiments, but similar 
effects can be found in any situation where the systems are small 
enough and the temperature is low enough. 

a. Polarization of Light 
Light waves can be polarized in any direction perpendicular to the 
direction of motion of the wave.  So, for example, if we have a laser 
propagating in the z

�  direction, the light beam can be polarized either 
along x

�  or y
� .  In this sense, light can be thought of as a transverse 

wave (i.e. one whose oscillations are perpendicular to the direction of 
propagation) and the two polarization directions can be thought of as: 

These two polarization components can be separated using a 
polarization filter.  Typically, the filter consists of a crystal composed 
of rows of aligned molecules.  Then, light whose polarization is not 
aligned with these rows will not pass through the crystal; meanwhile, 
light whose polarization is aligned with the crystal axis will be able to 
pass through the gaps between the rows. 
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Light from typical sources (such as a lamp or the sun) is not 
polarized; if you pass it though a polarization filter, some of the light 
passes though, and some does not. We will depict this simple 
experiment by: 

Where the round circle represents a polarization filter, and the vertical 
lines indicate that it is a polarization filter in the x direction. The 
polarization filter performs a simple measurement; it tells us how 
much of the light is polarized in a given direction. 

This measurement is, however, very boring. It gets interesting when 
we start to consider multiple polarization measurements being 
applied to one laser beam. For example, if the first filter is x while the 
second filter is y , we get no light transmitted: 

xy 

Expt. 1 

To put it another way, the first filter measures the polarization of the 
light and tells us that a certain part of the wave is x -polarized. Then, 
the second filter measures how much of the resulting x -polarized 
beam is actually y -polarized. The obvious result of this experiment 
is that none of the x -polarized light is simultaneously y -polarized. 
This makes sense from a physical perspective (none of the x ­
polarized waves would fit between the y -oriented slits) and also from 
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a logical point of view (it is impossible to have the light polarized in 
two mutually exclusive directions). 

On the other hand, if we perform an experiment where the first filter is 
x while the second filter is aligned at a 45º angle to x (along a 
direction x

� ′) we do get some transmission: 

x 

Expt. 2 

x’ 

In fact, if we have very good filters, we can get 50% of the x ­
polarized light to pass through the x

� ′ filter. We can rationalize this, 
as well, because x

� ′ is half-way between x and y , so having half of 
the x -polarized beam pass through the x

� ′ filter makes sense. 

Now, we come to the key experiment. Let’s take the beam of light 
produced in Expt. 2 and measure its polarization in the y direction: 

y x 

? 

Expt. 3 

x’ 

We find again that 50% of the light passes through the final filter. 
This may seem benign, but notice that if we remove the x

� ′ filter, we 
recover Expt. 1, where none of the light passed through the final 
filter. So, basically, the x

� ′ filter takes in a beam of light that is 0% 
polarized in the y direction, removes some of the light, and the 
resulting beam is then 50% y -polarized! What is going on here? 
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How Do We Expain This Result?


There is one obvious explanation of these experiments: perhaps the 
polarization filters do not filter the light, but instead rotate the direction 
of the polarization. This is actually the explanation given in most 
freshman physics texts. However, we should note two things that 
would make this a very strange interpretation. First, different 
polarizations of light are rotated in different directions. For example, 
if we pass x -polarized light through the x

� ′ filter, the light polarization 
is ‘rotated’ +45º to x

� ′. On the other hand if we pass y -polarized light 
through the same filter, it again comes out x

� ′, a net rotation of -45º. 
If we want to denote this with a picture, we might note that a normal 
rotation acts on the two independent polarizations like this: 

x 

y 

x’ 

y’ 

while the ‘rotation’ of polarizations looks quite different: 

x 

y 

x’ 

where the double arrow on the right indicates that the two 
independent polarizations on the left get ‘collapsed’ into one 
polarization on the right. The second weird feature of this ‘rotation’ is 
that we always get less light out after the rotation than we put in, and 
often the difference is significant. This contradicts our notion that with 
perfect optics we should be able to get perfect rotation. These two 
facts combined make it very difficult to think of this as a rotation. 

Another interpretation is to assume that the x
� ′ filter sometimes lets 

light through that isn’t exactly polarized in the x
� ′ direction. This, 

however, is inconsistent with the fact that, if we apply an x
� ′ filter once 

and then apply another x
� ′ filter to the resulting beam, we get 100% 
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transmission through the second filter (in the limit of perfect optics). If 
the filter sometimes admits light that is not x

� ′ polarized, then applying 
the filter again should remove some of those photons on the second 
pass. So the data seem to indicate that we are getting definite 
polarizations out of the filters. 

Quantum Interpretation of Polarization Experiments 

This experiment illustrates several key concepts of quantum 
mechanics. The first is the idea that the order in which we perform 
experiments matters. Consider the following set-up: 

y x 

Expt. 3a 

x’ 

This differs from Expt. 3 only in the order in which the filters are 
� ′applied (i.e. y x

� ′ x versus x y x ), but in the one case, we get light 
transmittance and the other we do not. If the order of two 
experimental observations does not change the result, the two 
observations are said to commute. The surprise that QM brings is 
that, in general, experimental observations do not commute with 
one another. In this case, for example, the action of applying the y 
filter does not commute with the use of an x

� ′ filter. AS we discussed 
in class, another way of saying this is to say that the x

� ′ filter disturbs 
the system while it measures the polarization. This is not because 
we have a bad filter; we could use any number of different 
experimental set-ups to perform analogous polarization 
measurements and we would find that every single one of them 
disturbs the system in exactly the same way. 

Naturally, we want some manner of quantifying these results. In 
order to do this, we require mathematical shorthand to describe these 
experiments concisely, and this shorthand is Quantum Mechanics 
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(QM). The experiments give us several guidelines as to what is (and 
is not) permissible if we want QM to reproduce the experiments. 

1. Observables Are Represented by Operators 
As a short hand, we will call anything that can be measured in an 
experiment an observable. The first rule of QM is: all observables are 
associated with operators. Generically, operators are things that do 
something to the system, and we will place a hat (e.g. x ˆ ) over 
operators to differentiate them from simple variables. In the 
polarization experiments, one observable is “how much of the light is 
x polarized?”, which is answered by applying the polarization filter in 
the x direction. We associate an operator, P ˆ , with this observablex 

and similarly define P ˆ and P ˆ 
y . By declaration, the multiplication of x ' 

operators is interpreted as a sequence of measurements, by 
convention read from right to left. Thus 

P P ˆ ˆ 
x ' x 

translates into “first apply an x -filter and then apply an x 
� ′ filter”. 

Using this shorthand, we can denote the inequivalence of Expts. 3 
and 3a by the symbolic equation: 

ˆ ˆ ˆ ˆ ˆ ˆ P P P ≠ P P P y x ' x x ' y x 

or, if we strip off the leading factor of P ˆ on both sides: x 

ˆ ˆ ˆ ˆ P P ≠ P P y x ' x ' y 

We thus arrive at the important point that the multiplication of 
operators does not commute: 

ˆ ˆ ˆ ˆ Multiplication does not commute: XY ≠ YX 
At this point, we have a nice shorthand for the polarization filters. 
Next, we need to create something to represent the photons. 

2. The System is Described by a State 
The physical system that is being observed is represented by a state. 
We will also sometimes call states “wavefunctions”. In order to 
differentiate a state from an operator or variable, we will enclose it 
with “ ” and call it a ‘ket’ state. In between the “ ”, we will write a 
label to tell us necessary information about the ket state. For 
example, a y -polarized photon would be in a state y . The ket state 
corresponds to a particular means of representing the wavefunction 
of the system, and we will use the two terms interchangeably. The 
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important point is that the state contains all the information that can 
be known about the system. Thus, if one knows the state of the 
system, one can predict the outcome of any experiment on the 
system. Now, as we mentioned above, operators are associated with 
things that can be observed by performing an experiment on the 
system. It is therefore not surprising that operators act on states, 
which we will write as: 

Ô ψ 
For example, applying a y -polarized filter to an x polarized photon 
would be written: 

x P ˆ 
y 

An operator acting on a ket state just gives another ket state. The 
resulting ket represents the state of the system after the 
measurement has been performed. Note that, because we know 
the filters disturb the system, the state of the system after the 
measurement will, in general, be different than it was before the 
measurement. 

3. Bra-Ket Gives Probability 
Finally, we need some method of getting hard numbers out of 
operators and states. For this purpose, we create a set of states 
(‘bra’ states) that are complementary to ket states. Like kets, bra 
states also carry all the information that can be known about the 
system. We will enclose the bra states in “ ” to differentiate bra 
states from ket states. The key property of bra states is that when we 
multiply bra times ket we will get a number: 

ψ χ = a number. 

Here, ψ and χ are two different possible states for the system. This 
may seem a little odd. Why do we need these bra states, anyway? 
We’ll get into this a little bit more later on, but we note that a very 
similar thing happens if we talk about vectors; there are two kinds of 
vectors (row and column) and we can only get a number out of a pair 
of vectors if we make the dot product (row)x(column). Hence, ket 
states are analogous to column vectors and bra states are analogous 
to row vectors, while the bra-ket (or ‘bracket’) product is analogous to 
a dot product. The bra-ket notation is due to Dirac and is named in 



his honor. We will make this analogy between Dirac’s states and 
vectors more concrete later on. 

We can associate a physical meaning with this number if we adopt 
what is called the Copenhagen interpretation, which associates the 
bracket with an average (or expectation) value of a measurement. 
That is to say, the bracket allows us to predict what the average 
outcome of an experiment would be if we performed it many, many 
times and summed the results. The third rule we will adopt is that for 
a system i ψn the sate ,the expectation value of an observable, O , is 
given by: 

ˆψ O ψ 
Ô = .

ψψ 
ˆFirst we recall that O ψ is also a ket vector. Thus, the numerator is 

a bra-ket (a number) and so is the denominator, so we are, indeed, 
getting a number out. Unlike the first two rules, which could have 
been guessed relatively easily, the third rule seems a bit arbitrary. 
The only justification we can give is that it works – all the 
experimental results ever obtained fit are correctly predicted by this 
principle. In order to convince ourselves of this, let’s return to the 
polarization experiments and see QM in action. 

4. Explaining the Polarization Experiments 
We have already seen that the polarization filters in this experiment 
can be represented by operators: P̂ 

x , P̂ 
y , etc. But how do they act on 

the states? And what are the states, anyway? These two questions 
arise any time one treats a new class of systems, and the solution to 
this dilemma is properly considered an additional rule of QM. Indeed, 
many of the early difficulties in the field came not in the definition of 
the basic principles but in the practical association of real 
observables with appropriate operators. In the end, once again, the 
correctness of our association of operators with observables must be 
verified by testing the agreement with experimental observations. 

Defining the state space is fairly straightforward. The set of all 
possible polarizations for the photon is just the set of all unit vectors 
perpendicular to the direction the photon is traveling (recall that light 
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is a transverse wave). Hence, we will denote the photon’s state by 
� 

u , where u is the unit vector pointing in the direction of the photon’s 
polarization. Then, it makes sense to define the overlap between two 
polarization states to be the same as the dot product of their 
polarization vectors: 

v u v u ⋅ ≡ 

This agrees with our idea that if the polarizations point in orthogonal 
directions, there is no overlap between the states. 

Now, given that we know what the states are, we come to the difficult 
part of determining what the operators P ˆ and P ˆ 

y are. We are given a x

hint by the fact that, experimentally, we know that given any initial 
state, we always end up with an x -polarized photon after we act with 
P ˆ and a y -polarized photon after we act with P ˆ 

y . Thus, x

P ˆ u = x c P ˆ u = c yx x y y 

where c is an undetermined constant. At this point, we have just 
inserted c because we suspect it will be useful; the rules of QM that 
we have set up so far don’t tell us what multiplying a state by a 
constant means. To fix the constant, we recall that applying two 
identical filters gives the same answer as applying one: 

ˆ ˆ � ˆ ˆ P P u = P ˆ u = x c P P u = P ˆ u = c yx x x x y y y y 

this property is called idempotency and idempotent operators are 
also called projection operators. It is easy to verify that the 
equations above are satisfied if 

P ˆ = x x P ˆ = y y , etc. x y 

Again, these operators are to be associated with the observable “how 
much of the light passes through the filter”. Then, 

P ˆ u = ( x x ) u = u x )x u x = x c ( c ⋅ ≡ x x x 

P ˆ u = ( y y ) u = y u y = cy y ( c ⋅ ≡ u y )y y 

While applying the x filter twice gives: 
� ˆˆ ˆ P P u = c P x = P c ˆ x = c ( x x ) x = x c x x = c xx x x x x x x x x 

where, in the first step we have used the result of the single-filter 
experiment, in the second step we have used the (assumed) fact that 
numbers commute with everything and in the final step we have used 

x x the fact that x is a unit vector so that x x = ⋅ = 1 . A strictly 
analogous result holds if we apply the y filter twice. Hence, this way 
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of associating operators with the filters is at least a plausible guess. 
To fully verify our guess, we proceed to ‘predict’ the results of the 
polarization experiments we already discussed. 

Experiment 0: In this case, we begin with initially unpolarized light 
and pass it through an x -filter. This immediately poses a difficulty 
because we haven’t defined what “initially unpolarized light” means, 
and for good reason. By saying the light is ‘unpolarized’, we 
essentially mean we don’t know what the state of the system is’. How 
then do we make a prediction? First, we must recognize that the 
beam of light consists of many, many photons, each of which must 
have a definite polarization – we just don’t know what each 
polarization is. However, since we are only asked to predict the 
average outcome, this does not pose a problem; we merely assume 
an arbitrary polarization direction for the photon and then average 
over this direction. So, our arbitrary polarization direction will be: 

u = cos θ x + sin θ y 

Then, using the rules of QM, we predict that the probability that a 
photon in this state will make it through the x -filter is: 

� � 2P u ˆ u = x u u x = cos θ x + sin θ x y x cos θ x + sin θ y = cos θx 

The effect of measuring the polarization of many, many photons in 
different states is to average over the value of θ . So the fraction of 
the light that passes through the filter will be: 

π 
� 2 1ˆ u P u = 1 cos θ θ = 2 .dx π ∫0∫


And hence, our rules predict (correctly) that half the initially 
unpolarized light will pass through the –filter, assuming that 
unpolarized light is made up of many randomly polarized photons. 

Experiment 1: In this case, we are making two successive 
measurements: an x -filter followed by a y -filter. We have already 
determined that half of the unpolarized light passes through the first 
filter. After the first measurement, the state of the system is given by: 

'u = P ˆ u = x u x = x x cos θ x + sin θ y = cos θ xx 

Note that, because of our definition of the P ˆ 
x operators, the 

polarization automatically collapses to x after the measurement has 
been made (recall that the norm of the state is unimportant). Hence, 
our task is now to figure out how much of the x -polarized light that 
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comes out of the first filter passes through the second filter. 
According to the rules: 

� � � 

= 0=ˆ 
y 

� 

x P x 
� 

x y y x 
� 

Thus, none of the light makes it through the second filter. 

Experiment 2: In this case, we again make two measurements: x first 
and then �'
x = (

2 
1 ). As before, half the light passes through the first x y 

filter, ending up with x -polarizati

22 
⎟⎠
⎞⎜⎝

⎛⎟⎠
⎞⎜⎝

⎛
on. For the second f ter: il

1 1
 = 1


2

x (

2 
1 ) (

2 
1 ) � x y ˆ 

x 

�

P x ' x 
� =
 x x ' 

� 

x x 
�

' + += =x y x 

Thus, half the x -polarized light passes through the second filter, and 
on quarter of the total intensity is transmitted. 

Experiment 3: Here, we perform three measurements: first x , then 
�

' = (
2 

1 ), then y . The results of the first two measurements were +x y 

already computed in Expts. 0 and 2. Hence, we only need to predict 
�

the effect of the final polarization filter. The light coming out of the x ' -
�

filter is x ' -polarized since: 
( )' 

2 
1 (cos θ )' = ˆˆ 

' xx 

�

u P P = ' 
� 

u x x x 
� 

'∝�

' =u x x x 

Hence, the outcome of the third measurement is: � �� � 

' = (
2 

1 x � 

+ ) ��� y y y (
2 

1 x � 

+
y � 

) =

� 1� � 1� 1 

� 

2 
� � � 

2 
=


2

ˆ' y �� x P x ' =
 ���� x y y x '


So, we loose half the intensity of the light by passing it through the 
third filter. Thus, 1/8 of the total initial intensity makes it through. 

So, to recap, once we correctly identified the possible states of the 
x 
� , y 

�system ( ,etc.) and made an ansatz for the operators 
� 

x x 
� 

y y ( P ˆ = , P ˆ

y ,etc) we were able to correctly predict the results
=


of all the polarization experiments using the rules of QM. Score one 
for Dirac notation. 

b. Single Molecule Fluorescence 
Suppose we want to measure the properties of individual sodium 
atoms. To do this, we can begin with sodium vapor at high pressure, 
and allow the gas to expand through a small nozzle to an area of 
lower pressure (supersonic expansion). The expanding gas can be 
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collimated by placing a sceen a distance away from the nozzle. This 
results in a very cold, very dilute beam of atoms. 

Now, sodium has an important excited state (the ‘D line’ state) and 
we are interested in measuring its lifetime. That is, we are interested 
in determining how long it takes an excited sodium atom to emit a 
photon: 

Na* → Na + photon 
We know from experience that fluorescence typically occurs on the 
nanosecond time scale, so our measurements need to be fast. In 
order to accomplish this task, a team of graduate students working 
round the clock for three years designs a tuneable ultrafast laser that 
operates in the region of spectral interest (in this case, about 589 nm) 
with picosecond time resolution. They also design a very accurate 
detector with similar time resolution in the same spectral range. 
Using these two devices, we can measure the lifetime of the sodium 
‘D line’ state by hitting the molecular beam with a laser pulse at one 
point along the beamline at time t1 and placing a detector further 
down the line to register any sodium fluorescence at a later time t2: 

t1 t2 

Na Na Na Na Na* Na* Na* Na* Na Na 

Detector 

The lifetime is then determined by the time delay between excitation 
and emission (t2-t1). Now, even a very accurate detector misses 
many photons; further, very often, the pulse will not succeed in 



exciting a sodium atom, because sometimes there won’t be any 
atoms in the path of the laser beam (recall that the molecular beam is 
very dilute).  Hence, we will have to try this many, many times before 
we get a successful result.  But when we do, we can be very 
confident that the count came from the fluorescence decay (assuming 
we are careful to isolate our experiment from outside light sources). 
 
So, we do this experiment several thousand times (we can fire the 
laser every microsecond, so this doesn’t take as long as you might 
think) and eventually we register a successful count at the detector, 
and determine that the lifetime is 12.554(2) ns, where the uncertainty 
results from our picosecond time resolution in the excitation and 
detection.  Just to check our results, we run the experiment again.  
This time we register a lifetime of 8.492(2) ns.  If we run the 
experiment a third time, we register a lifetime of 22.100(2) ns.  Again, 
we have been very careful to ensure that we have ps time resolution, 
and the initial states of the sodium atoms are absolutely identical in 
the repeated experiments.  What could be going on here? 
 
One interpretation of these experiments is in terms of the energy-time 
uncertainty relation.  To review, if we want to have a short pulse, 
then, pictorially, we need to have higher frequency oscillations to 
make this happen: 
 

 
 

Short Pulse 

High Frequency 

Long Pulse 

High Frequency 



We can put mathematical heft to this if we think of the electric field of 
the emitted light as being a sum of different waves: 

t E i) ( = ∑ci c o s ( ω t ) 
i 

Then, we define the width of the pulse: 

∫
 2( ∫ d t t E t ) ) ( t 
2 

t2 2 2Δ − ) ( d t t E t −t = = 
and the variance of the frequencies


− ⎜⎝
⎛ ⎟⎠

⎞2∑
 ∑
2ω2Δω = i ω ici ci 
i i 

then it can be shown that, for any pulse 
Δω Δ t ≥ 1 . 

We will prove this relation later in the course, but for now, let’s take it 
as given. The uncertainty relation definitely would explain the spread 
in arrival times; for a given frequency resolution, the arrival time 
cannot be determined any more precisely than to within Δ t ≥ 1/ Δω . 
Hence, it appears that there is some (very small) variance to the 
frequencies that is causing a very broad distribution of emission 
times. Indeed, if we measure the frequency of the emitted photon 
(rather than its arrival time) then in a series of runs we might find 
ω =589.59 nm, 589.58 nm, 589.61 nm … so it does appear that the 
large uncertainty in time is related to a small uncertainty in energy. 

However, there are two perplexing things about this interpretation. 
First off, what is the origin of Δω ? We can easily verify that it does 
not arise from our laser or from our detector; we can vary the 
frequency bandwidth of both and Δ t does not change. Hence Δω 
must be a property of the molecule. This is actually one of the first 
observations that lead to the development of QM, namely that atoms 
and molecules have discrete, fairly well defined energy states rather 
than the continuous spectrum associated with energies in classical 
mechanics. Our QM formalism will have to confront the existence of 
these “special” states. 

The second perplexing issue is as follows: the uncertainty in time 
relates to the time difference t1-t2, but for times between t1 and t2 

there are no photons in the system, there is only the sodium atom. 
How, then, does the sodium atom know to wait (on average) a time 
interval Δ t before emitting the photon? To put it another way, how 



does the sodium atom know about the energy-time uncertainty 
relation? This conundrum frustrated physicists for many years. On 
the one hand, we know atoms are particles, but under these 
circumstances the sodium atom is behaving like a wave (because the 
energy-time uncertainty relation is a property of waves). This 
particle-wave duality is another aspect of QM. 

Before moving on to show how QM deals with these experiments, we 
return to the point we started with: can we do better than simply 
predicting the average outcome of an experiment? These 
experiments show that the answer, in general, is no; all observations 
are by their nature probabilistic: one cannot in general predict the 
precise outcome of an experiment. The best one can do is predict 
the probability that one outcome will be observed as compared to 
another. In fluorescence experiments above, we found that decay 
times around 10-20 ns are very common, while a decay time of, say 2 
hours is very uncommon. If we repeat the experiment many, many 
times and make a histogram plot of the number of counts that appear 
after a given elapsed time (t2-t1), we obtain a probability distribution 
that looks like: 

4 ns 8 ns 12 ns 16 ns 20 ns 24 ns 28 ns 32 ns 

Number of Counts 

This tells us how likely it is that the molecule will fluoresce within a 
given period of time. The shocking thing is that this is absolutely the 
best one can do in terms of predicting the fluorescence time 
accurately. This effect is not due to some weakness of our 
experiment, nor to any inhomogeneity of our sample. Instead, it 
arises from a very deep limitation on what we can know about a 
quantum system. If we are interested in knowing whether the system 



is in a given state, α , the best one can hope for is a way to predict 
the probability, Pα , that we will find the system in that state. If we 
perform the measurement of (t2-t1) once, we cannot predict the result; 
but if we perform the experiment many, many times and keep track of 
the individual times, we will always obtain the distribution above. In 
this sense our experiments are reproducible. 

Quantum Interpretation of Polarization Experiments 

In order to explain the very narrow distribution of energies of the 
sodium atom we need another rule. One can associate a set of 
eigenvalues, oα , and eigenstates, ψα , with each operator, Ô , by 
finding all of the solutions of the eigenvalue equation: 

Ô ψα = oα ψ α 

The fourth fundamental rule of QM is that when measuring the value 
of the observable O , the only possible outcomes are the 
eigenvalues of Ô . If the spectrum of eigenvalues of Ô is discrete, 
this immediately implies that the resulting experimental results will be 
quantized. This immediately explains the narrow range of energies 
observed in the flourescence experiments. By detecting the 
frequency of the emitted photon, we immediately know the energy of 
the emitted photon (since E = �ω = hν ). Further, we can measure the 
energy of the sodium atoms after emission. Then, by conservation of 
energy (which we certainly hope holds in this strange new world of 
QM!) we can determine the energy of the excited sodium atom: 

*E( Na )− E( Na ) = �ω emit 

if there is only one possible eigenenergy of the system, then we 
expect a very narrow distribution of final energies, as is observed. Of 
course, concomitantly we expect a broad distribution of emission 
times. 

In order to properly account for the wave-particle duality, we need to 
define the concept of a superposition of two states. Say that Na 

represents the sodium atom in the ground state and Na * represents 
the excited state. In general, what does it mean for the system to be 
in the state a Na + b Na * ? Does this have any meaning at all? In 
QM, this superposition of states is interpreted to mean that the 
system has two physically accessible states and that no 



measurement has been made to tell us which one is actually realized. 
When a measurement is made, the superposition collapses to one 
or the other of the observable states. Thus, between absorption and 
detection of the emitted photon, the sodium is said to be in a 
superposition of two states; it is simultaneously both excited and not 
excited. The two states can interfere with one another, and this gives 
rise to the (wave-like) uncertainty principle. We destroy the 
superposition by making a measurement that detects the photon (or 
does not). The measurement always gives us one of the two 
superposed states, but never both. After the superposition 
collapses to one state, the interference between states is destroyed. 

This is popularly recounted in the Schrödinger’s cat paradox. 
Suppose you have a sick cat and you put it in a box for a long time, 
and do not look at for a long time. Then according to quantum 
mechanics, it exists in a superposition of two states: “cat is dead” 
and “cat is alive”. Once you open the box, however, it will either be 
dead or alive – the superposition will have collapsed to a single 
state. This is a bit of an unrealistic experiment, but it does illustrate 
one key point: Schrödinger did not like cats. This also illustrates the 
point that QM assumes no knowledge of anything that is not 
experimentally observable, because observation has the potential to 
change the outcome of later experiments. In between experiments 
our uncertainty about how the system evolves factors very heavily in 
how we make predictions about future experiments. 

This leads to the fifth (and final) rule of QM: after O has been 
observed and found to have a value oα then the wavefunction of the 
system collapses into the eigenstate ψα . This is perhaps the most 
unsatisfying of the postulates of QM, because the collapse is 
completely probabilistic – we can’t predict the outcome no matter how 
hard we try. Indeed, there is a small but vocal faction of physicists 
that maintain that this postulate is, in fact, wrong. You may have 
heard Einstein’s famous quote that “God does not play dice.” This 
was Einstein’s justification for rejecting the fifth postulate. The 
alternatives are called “hidden variable” theories. Basically one 
assumes that there is some variable that is not accessible to us 
experimentally that determines which state the wavefunction 
ultimately collapses to. Whether or not a hidden variable theory can 



work (and the majority of physicists agree that no hidden variable 
theory will be able to match all the experimental data) the fact 
remains that the fifth postulate of QM is consistent with all the 
experimental data ever collected. Hence, while we may not like it 
on a philosophical level, we are not philosophers. From a scientific 
perspective, the fifth postulate is perfect. 

We are now in a position to describe the fluorescence experiments. 
After getting hit by the initial laser pulse, the sodium atom is in the 
superposition state: 

a Na ; ω i + b Na 0 * ; 

where the first state means “no absorption, atom remains in ground 
state” and the second mean “absorption, atom excited” and (as we 
saw in the polarization experiements) the constants relate to the 
probability of the system being in each state. We will assume these 
states are orthogonal: 

Na ; ω i Na 0 * ; = 0 

which simply reflects the fact that the two states are mutually 
exclusive. Now, after a certain amount of time (dt), the atom will 
evolve to a new superposition 

ψ = a Na ; ω i + b Na 0 * ; + c Na ; ; ω ω fi 

where the third state means “absorption, then emission, sodium 
returns to ground state”. By turning on our detector, we make a 
measurement of the probability of finding this third state. Following 
our definitions from the polarization experiments, we could define the 
detector operator: 

ˆ D ≡ Na ; ; ω ω fω ω f Na ; ; i i 

which will certainly tell us if there is a photon emitted or not. We find 
that the probability of detecting the photon is 

2ˆψ Dψ c
P = = .

2 b2ψ ψ a + + c2 

After the measurement, the state collapses to either 
a Na ; ω i + b Na 0 * ; (if no photon is detected) or Na ; ; ω ω f (if the i 

photon is detected). Thus, between time 0 and time dt we have 
something that looks like: 



ψ = a Na ;ω + b Na 0 *; + c Na ; ω ω f;i i 

No Photon 
(Probability 1-P) P) 

Photon Detected 
(Probability 

a Na ;ω i + b Na 0 *; ;Na ; ω ω fi 

Now, because we could detect the photon at any time, this same 
process repeats itself every dt. Hence, if we are interested in the 
number of atoms still exicited (N), we see that 

dN = − P dt 

dN 
⇒ = − P 

dt 

⇒ t N Pt ) ( = − e− 

Thus, we should see exponential decay. This is characteristic of 
probabilistic decay and is completely consistent with our experimental 
observations. 


