
 

X. Perturbation Theory 

In perturbation theory, one deals with a Hamiltonian that is composed 

of two pieces: a reference part ( )
0

Ĥ  that is typically exactly solvable 

and a perturbation ( )
1

Ĥ  that is assumed to be “small”.  In practice, 

this usually arises because we can experimentally control the 

importance of 
1

Ĥ ; for example, if 
1

Ĥ  represents the interaction with 

an external magnetic field, we can control the strength of this 
interaction by varying the magnitude of the field.  In this general 
situation, it is useful to consider the general Hamiltonian: 

( )
10

ˆˆˆ HHH λλ +=  

Here, λ  is our “control” parameter – it allows us to isolate the 

influence of 
1

Ĥ  on the eigenvalues and eigenstates of ( )λĤ .  At the 

end of the calculation, the “physical” Hamiltonian will always 
correspond to 1=λ , but at the intermediate stages λ  allows us to 
collect terms in a meaningful way. 
 
Now, given an arbitrary Hamiltonian, how are we to choose the 

appropriate reference Hamiltonian?  It is clear that for a given Ĥ  we 
can choose any reference we like by writing: 

( ) ( )
00

ˆˆˆˆ HHHH −+= λλ  

Hence, if we define 
01

ˆˆˆ HHH −=  the full Hamiltonian takes the desired 

reference+perturbation form for any choice of 
0

Ĥ !  In practice this is 

complicated by the fact that different choices of the reference 
0

Ĥ  will 

give different perturbation expansions – a good choice will give 
accurate answers, but a bad choice will give poor results.  Thus, in 
many situations, the accurate use of perturbation theory essentially 

reduces to the art of choosing a good reference 
0

Ĥ .   

 
However, in this course we will assume that we know the exact 

eigenvalues and eigenstates of 
0

Ĥ : 
( ) ( ) ( )000

0
ˆ

nnn EH ψψ = . 

This severely limits our choices of 
0

Ĥ , since at present we only know 

two exactly solvable Hamiltonians (the Harmonic oscillator and the 



piecewise constant potential).  Hence, every problem we treat will 
look like (Harmonic oscillator + other terms) or (step potential + other 
terms).  It should be stressed that this is not a necessary assumption 
to apply perturbation theory; one can also formulate perturbative 
expansions based on approximately solvable reference Hamiltonians, 
but we will not treat this case in this course. 
 

Given that we know the eigenstates and eigenvalues of 
0

Ĥ , we now 

seek to understand how 
1

Ĥ  influences these eigenvalues and 

eigenstates.  Thus, we are interested in the solutions of the equation: 

( ) ( ) ( ) ( )λψλλψλ nnn EH =ˆ  

Now, recall that our physical picture is that 
1

Ĥ  has a “small” influence 

on 
0

Ĥ .  This can be enforced by examining the behavior of the 

eigensystem for small λ .  To this end, we assume that we can 
expand the eigenstates and eigenvalues in a Taylor series in λ : 

( ) ( ) ( ) ( )
...

2210 +++= nnnn ψλψλψλψ  

( ) ( ) ( ) ( )
...

2210 +++= nnnn EEEE λλλ  

If we plug these expansions into the eigenvalue equation, we obtain 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )......

...ˆˆ

22102210

2210

10

++++++

=++++

nnnnnn

nnn

EEE

HH

ψλψλψλλ

ψλψλψλ
 

Now, this equation must be true for all λ .  Therefore, we can equate 

the coefficients of 0λ , 1λ , 2λ ….  If we expand the products and collect 
terms, we find: 
 

0th order ( 0λ ):  ( ) ( ) ( )000

0
ˆ

nnn EH ψψ =  

1st order ( 1λ ):  ( ) ( ) ( ) ( ) ( ) ( )10010

1

1

0
ˆˆ

nnnnnn EEHH ψψψψ +=+  

2nd order ( 2λ ): ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2011021

1

2

0
ˆˆ

nnnnnnnn EEEHH ψψψψψ ++=+  

etc… 
 

The 0th order relation is trivially satisfied because ( )0

nψ  are the 

eigenstates of the reference Hamiltonian.  Our task now is to obtain 

closed form expressions for the other unknowns (i.e. ( ) ( ) ( )
...,,

211

nnn EE ψ ) 

in these equations.  We do this by projecting the equations onto 



cleverly chosen states.  For example, if we multiply the 1st order 

equation by ( )0

mψ  on both sides, we obtain: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )10010

1

0100

1000010

1

0100

1000100

1

0100

1000100

1

01

0

0

ˆ

ˆ

ˆ

ˆˆ

nmnmnnnmnmm

nmnnmnnmnmm

nnmnnmnmnmm

nnmnnmnmnm

EEHE

EEHE

EEHE

EEHH

ψψδψψψψ

ψψψψψψψψ

ψψψψψψψψ

ψψψψψψψψ

+=+⇒

+=+⇒

+=+⇒

+=+

 

where, in the last line, we have used the fact that ( )0

nψ  form an 

orthonormal basis.  To deal with the Kronecker delta, we treat the 
nm =  and nm ≠  cases separately.  For nm =  we obtain: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )10010

1

0100 ˆ
nnnnnnnnnnn EEHE ψψδψψψψ +=+

( ) ( ) ( )10

1

0 ˆ
nnn EH =⇒ ψψ  

And thus, we obtain an expression for the first order energy ( )1

nE  that 

simply requires sandwiching the perturbing Hamiltonian between the 
zeroth order eigenstates.  In the nm ≠  case, we obtain: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )10010

1

0100 ˆ
nmnmnnnmnmm EEHE ψψδψψψψ +=+  

( ) ( ) ( ) ( )( ) ( ) ( )10000

1

0 ˆ
nmmnnm EEH ψψψψ −=⇒  

( ) ( )

( ) ( )( )
( ) ( ) ( )nm

EE

H
nm

mn

nm
≠=

−
⇒ 10

00

0

1

0 ˆ
ψψ

ψψ
 

What does this last expression mean?  Note that if we wanted to 

expand ( )1

nψ  in terms of the eigenstates of 
0

Ĥ  we would write: 

( ) ( ) ( ) ( )1001

nm

m

mn ψψψψ ∑= . 

The unknowns in this expansion are the overlap coefficients 
( ) ( )10

nm ψψ .  By comparison with the previous expression, we see that 

we now know all of these coefficients in terms of matrix elements of 

1
Ĥ  and the zeroth order eigenvalues.  The one exception is 

( ) ( )10

nn ψψ .  To fix this coefficient, we constrain the norm of ( )λψ n .  

The normalization of ( )λψ n  does not influence the out come of any 

experiment.  However, it is convenient to enforce intermediate 
normalization: 



( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )...1
20210000 +++== nnnnnnnn ψψλψψλψψλψψ  

Note that this is not the same as conventional normalization, and so 

( ) ( ) 1≠λψλψ nn .  However, if we enforce intermediate normalization 

for all λ , we can equate the coefficients of different powers of λ .  
Thus,   

0th order ( 0λ ):  ( ) ( )00
1 nn ψψ=  

kth order ( 0, >kkλ ):  ( ) ( )k

nn ψψ 0
0 =  

Thus, in intermediate normalization, ( ) ( )10

nn ψψ  is zero. We therefore 

know all the overlaps ( ) ( )10

nm ψψ  and we can therefore expand the first 

order wavefunction in terms of the zeroth order eigenstates: 

( ) ( )
( ) ( )

( ) ( )( )∑
≠ −

=
nm mn

nm

mn
EE

H

00

0

1

0

01
ˆ ψψ

ψψ . 

This expression immediately gives us a quantitative measure that lets 

us assess whether 
1

Ĥ  is really “small”: if ( ) ( ) ( ) ( )( )000

1

0 ˆ
mnnm EEH −<<ψψ  

for all nm, then the first order wavefunction will be small.  In this case 

our qualitative picture of perturbation theory will be correct. 
 
Now, in practice the first order energy correction is very often zero 

either because of symmetry or because 
0

Ĥ  has been chosen very 

cleverly.  In this case, it becomes necessary to go to second order in 

the λ  expansion to determine how 
1

Ĥ  affects the eigenvalues.  That 

is, it becomes necessary to compute ( )2

nE .  To obtain this, we project 

the 2λ  equation on to ( )0

nψ : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2001100201

1

02

0

0 ˆˆ
nnnnnnnnnnnnn EEEHH ψψψψψψψψψψ ++=+

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2001100201

1

0200 ˆ
nnnnnnnnnnnnnn EEEHE ψψψψψψψψψψ ++=+

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1010021

1

0 ˆ
nnnnnnnn EEH ψψψψψψ +=⇒  

 

Hence, we obtain an expression for ( )2

nE : 

0 
1 



( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )( )

( ) ( )
( ) ( )

( ) ( )( )

( ) ( )

( ) ( )( )∑∑

∑

≠≠

≠

−
=

−
=















−
==⇒

nm mn

nm

nm mn

nm

mn

nm mn

nm

mnnnn

EE

H

EE

H
H

EE

H
HHE

00

2
0

1

0

00

0

1

0

0

1

0

00

0

1

0

0

1

01

1

02

ˆˆ
ˆ

ˆ
ˆˆ

ψψψψ
ψψ

ψψ
ψψψψ

 

( )

( ) ( )

( ) ( )∑
≠ −

=
nm mn

nm

n
EE

H
E

00

2
0

1

0

2

ˆ ψψ
 

As an example of how we can apply this in practice, let’s look at the 
Hamiltonian: 

2

2
122

2
1

2

ˆˆ
2

ˆˆ qkqm
m

p
H δω ++=  

Or, in reduced units ( 1=== ω�m ): 

2

2
12

2
1

2

ˆˆ
2

ˆˆ qkq
p

H δ++=  

First, we identify 
0

Ĥ  and 
1

Ĥ : 

2

2
1

2

0
ˆ

2

ˆˆ q
p

H +=        2

2
1

1
ˆˆ qkH δ=  

The zeroth order energy is just the Harmonic oscillator energy: 
( ) ( )

2
10 += nEn  

while the first order energy is 
( ) ( )

2
1

2
12

2
12

2
11

ˆˆ +=== nknqnknqknEn δδδ  

and the second order energy is 

( )
( ) ( ) ( ) ( ) ( ) ( )

( )( )
( ) ( )

( )
( ) ( )

( )( ) ( )

( )
2
12

8
1

2

4
1

2

4
1

0

2

0

2

4
1

0

2

0

2

4
1

0

2

0

2
2

2
1

0

2

0

2
2

2
1

00

2
2

2
1

2

2

1

2

12

112

2ˆ2ˆˆ

+−=

−
+

−

++
=

−

−
+

−

++
=

−

−
+

−

+
=

−
=

−+

−+≠

∑

nk

nnknnk

EE

nnk

EE

nnk

EE

nqkn

EE

nqkn

EE

mqkn
E

nnnn

nnnnnm mn

n

δ

δδ

δδ

δδδ

 

However, we could have computed these in another way.  Notice that 
our full Hamiltonian is still a Harmonic oscillator 



22

2
1

2

ˆ~

2

ˆˆ q
p

H ω+=  

but with the effective frequency 

kδω += 1~ . 

Thus, we can easily write down the exact eigenvalues of the full 
Hamiltonian for this simple case: 

( ) ( )
2
1

2
1 1~ ++=+= nknEn δω . 

If we expand this in a power series in kδ : 

( ) ( ) ( ) ...
2
1

8
12

2
1

2
1

2
1 ++−+++= nkknnEn δδ  

Comparing this with our expressions for the first and second order 
energy corrections, we see that 

( ) ( ) ( )
...

210 +++= nnnn EEEE  

which is exactly what we would expect based on our assumption that 

( ) ( ) ( ) ( )
...

2210 +++= nnnn EEEE λλλ  

Setting 1=λ  in the latter expression immediately yields the former.  
Note that this is really just a convenient way to check that we have 
done all the algebra right; in the general case, the exact eigenvalues 
will be unknown and the perturbative results will be our only guide. 
 
Now, the expressions above do not apply if the eigenstate we are 
interested in is degenerate with another eigenstate.  In this case 

( ) ( )00

mn EE =  and the second order energy correction diverges!  This, in 

turn, is related to the fact that, in general, the first order change in the 
energy is not well defined for a degenerate state: a state 

)0()0()0(

' mnn ba ψψψ +=  that is a linear combination of degenerate 

states is also an eigenstate with the same eigenvalue.  However the 

first order energy change ( )2

'nE  will typically be different from ( )2

nE  and 
( )2

mE .  Because of this ambiguity in the first derivative, the second 

derivative ends up being infinite.  Looking at the second order energy 
expression, the only way this could possibly be avoided is if 

( ) ( )0

1

0 ˆ
nm H ψψ  is also zero.  It might seem very unlikely that this would 

happen but, as we are about to show, for any number of degenerate 

states we can always make it so that the matrix elements of 
1

Ĥ  are 

zero between different degenerate states.   
 
Assume we have k  degenerate zeroth order states:  



( ) ( ) ( ) ( )0000
,...,,

321 knnnn ψψψψ  

For which: 
( ) ( )00

0
ˆ

jj nn EH ψψ =  

where the energy, E , is the same for all j .  Of course, any linear 

combination of the ( )0

jnψ  is also an eigenstate with energy E  and we 

want to exploit this ambiguity to force ( ) ( )0

1

0 ˆ
ij nn H ψψ  to be zero for all 

ji ≠ .  First note that, in the ( )0

jnψ  basis, 
0

H  is proportional to the 

identity matrix: 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

















=
















=

















=

......0

...10

001

......0

...0

00

.........

...ˆˆ

...ˆˆ

0

0

00

0

0

0

0

00

0

0

2212

2111

EE

E

HH

HH

nnnn

nnnn

ψψψψ

ψψψψ

0
H  

Thus, if we make a change of basis (i.e. replace each ( )0

jnψ  by some 

linear combination of the  ( )0

jnψ ) we find: 

1TT1TTTHTH
00

EEE ===⇒ †††  

Where, in the last step, we have used the fact that a change of basis 
is unitary.  Thus, we see that 

0
H  is invariant to a change of basis that 

just mixes the degenerate levels.  On the other hand 
1

H  is not 

invariant to this change of basis.  We therefore transform to the 

particular linear combination of the ( )0

jnψ  (call it the ( )0~
jnψ  basis) that 

renders 
1

H  diagonal. In this basis we have: 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

















=
















=

.........

...~ˆ~~ˆ~

...~ˆ~~ˆ~

......0

...0

00
0

0

00

0

0

0

0

00

0

0

2

1

2212

2111

nnnn

nnnn

HH

HH

E

E

ψψψψ

ψψψψ

1
H  

where, in the first step, we have used the fact that 
1

H  is (by 

assumption) diagonal.  Comparing the second and third expressions 

immediately shows that ( ) ( )
0~ˆ~ 0

1

0 =
ij nn H ψψ  if ji ≠ .  The  ( )0~

jnψ  basis is 

the correct basis in which to apply perturbation theory, because the 
first order corrections are well defined.  Essentially, when the states 

( )0

jnψ  are degenerate, even a tiny (infinitesimal) perturbation 

proportional to 
1

H  causes the eigenstates to spontaneously shift to 

1 



( )0~
jnψ ; the original Hamiltonian does not distinguish between these 

states because they are degenerate, but 
0

H +ε
1

H  breaks the 

degeneracy for any ε.  It is therefore convenient to work in the ( )0~
jnψ  

basis from the outset. 
 
Further examination of the matrix representation of 

1
H  shows that the 

proper first order correction is given by: 
( ) ( ) ( )10

1

0 ~ˆ~
jjj nnn EH =⇒ ψψ  

That is, the correct first order energy is given by the standard 

expression, but using the new functions ( )0~
jnψ .  One can go beyond 

this to formula re-write the second order energy as: 

( )

( ) ( )

( ) ( )∑
≠ −

=
nm mn

nm

n
EE

H
E

00

2
0

1

0

2

~ˆ~ ψψ
. 

Here, the ( )0~
nψ  states are still eigenstates of 

0
Ĥ .  However, within the 

subspace of degenerate eigenstates of 
0

Ĥ , the ( )0~
nψ  are chosen so 

that the off-diagonal elements of 
1

Ĥ  vanish and one can therefore 

neglect these terms in the summation.  Now, usually, the first order 
correction will be enough to break the degeneracy, in which case the 
second order energy is not needed.  However, in extraordinary cases, 
the second order correction may be needed.   
 

Typically, a physical 
0

Ĥ  will have many different “blocks” of 

degenerate eigenvalues.  To state this pictorially: 

























=
0

H  

In practice, one must deal with each of the degenerate sub-blocks 

separately; one must find the ( )0~
nψ  that diagonalize 

1
Ĥ  in each block 

 

1 

2 



and compute the second order energy correction for each state in the 
block in turn before moving on to the next block.  Note that making a 
change of basis within one block (e.g. block 1) will not affect the first 
or second order energy for a state in another block (e.g. block 2). 
Hence, if you are only interested in states in, say, block 1, you do not 
need to worry about transforming the degenerate states in block 2. 
 


