
 

XII. The Born-Oppenheimer Approximation 
 
The Born-
Oppenheimer 
(BO) 
approximation is 
probably the most 
fundamental 
approximation in 
chemistry.  From a 
practical point of 
view, it will allow 
us to treat the 
electronic 
structure of 
molecules very 
accurately without 
worrying too much 
about the nuclei.  However, in a more fundamental way, it underpins 
the way that most chemists think about molecules.  Any time you see 
a chemist draw a picture like the one at right, you are implicitly 
making use of the framework suggested by the Bon-Oppenheimer 
approximation.  So we are going to spend some time talking about 
this approximation and when we do and do not expect it to be valid. 
 

a. The Adiabatic Approximation 

 
For any molecule, we can write down the Hamiltonian in atomic units 

( 1=== eme� ) as (defining βααβ rrr −≡ , etc.) : 
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The physical motivation behind the Born-Oppenheimer Approximation 
is that the nuclei are much heavier than the electrons (e.g. a proton is 
1800 times as heavy as an electron).  At any given instant, the 
electrons will “feel” a Hamiltonian that depends on the position of the 
nuclei at that instant: 
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Where R  denotes the dependence of elĤ  on all of the nuclear 

positions { }IR  at once. In the limit that the nuclei are infinitely 

massive, they will never move and the positions IR  in the above 

expression will be fixed; i.e. the molecule will be frozen in some 
particular configuration.  In this case, the IR ’s can be considered as 

parameters (rather than operators) that define the effective 
Hamiltonian for the electrons.   
 
For any fixed configuration of the molecule, then, one is interested in 
solving a Schrödinger equation that involves only the electronic 
degrees of freedom: 

( ) ( ) ( ) ( )RRRR elelelel EH Ψ=Ψˆ  

where we have noted explicitly that the Hamiltonian, its eigenstates 
and eigenvalues depend on the particular nuclear configuration.  This 
is the key element of the BO approximation; it allows one to compute 
the electronic structure of a molecule without saying anything about 
the quantum mechanics of the nuclei. 
 
Once we have solved the electronic Schrödinger equation, we can 
write down the effective Hamiltonian for the nuclei by simply adding 

back in the terms that were left out of elĤ : 
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Hence, the nuclei move on an effective potential surface that is 
defined by the electronic energy, and we can define wavefunctions 
for the nuclei alone that are eigenfunctions of this Hamiltonian: 
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Thus, another way to think about the BO approximation is that it is 
valid whenever the electronic and nuclear wavefunctions 



approximately decouple.  Notice that the states we are using do not 
treat the nuclei and electrons as independent particles; the 
parametric dependence of the electronic eigenstates introduces a 
non-trivial coupling between the two, and so the decoupling need not 
be complete for the BO approximation to be valid. 
 
Finally, we note that the electronic Schrödinger equation can also be 
derived by assuming that the high masses of the nuclei mean that 
they can be treated classically.  Then the nuclei are completely 

described by a trajectory )(tR .  elĤ  can then be though of as 

depending either on R or on time.  If we take the latter approach and 
assume the nuclei move infinitely slowly, we have a Hamiltonian  

( )tHel
ˆ  that is changing very slowly with time and hence if the 

electrons start out in an eigenstate of ( )0ˆ
elH , they will adiabatically 

follow this eigenstate along the trajectory and end up in an 

eigenstate of ( )tH el
ˆ .  Thus, if the nuclei are slow-moving classical 

particles, the electronic Schrödinger equation falls out naturally.  For 
this reason the BO approximation is sometimes called the adiabatic 
approximation.  Note however, that the BO approximation does not 
treat the nuclei classically.  It describes nuclei that move quantum 
mechanically on an effective potential defined by the electrons. 
 

b. The Coupled Channel Hamiltonian 

 
By itself, the BO approximation is exceedingly accurate, which 
accounts for its widespread use throughout chemistry.  Indeed, in 
most cases where it fails, one can usually explain the result by 
assuming that the system is adiabatic “almost all” the time, with only 
a few isolated regions where corrections need to be accounted for.  
Hence, it is extremely useful to consider the exact Schrödinger 
equation expressed in the basis defined by the BO approximation. 
 
To this end, we note that the electronic eigenstates for any fixed 
choice of the R ’s forms a complete basis.  That is, the wavefunctions 

( )RiΩ  that satisfy  

( ) ( ) ( ) ( )RRRR iiiel EH Ω=Ωˆ  



form a complete basis for the electrons.  Likewise, once we have 
selected a particular electronic state, the vibrational eigenstates on 
this potential surface form a complete basis for the nuclei; thus, the 
wavefunctions ( )RiJ ,Φ  that satisfy  
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for any fixed “ i ” form a complete basis for expanding any nuclear 
wavefunction.  Therefore, applying our experience with many 
particles, we conclude immediately that the set of products 

( ) ( )RR iiJ ΩΦ ,  form a complete basis for any wavefunction that 

describes the electrons and the nuclei at once.  Hence, we can write 
any wavefunction for the molecule as: 
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Note that we have chosen a “mixed” representation: the nuclei are 
being described using wave mechanics, while the electrons use Dirac 
notation.  This turns out to be the most convenient way to deal with 
mixed electron/nuclear systems.  We can use this expansion to 
examine where the errors in the BO approximation come from. First, 
we represent the Hamiltonian as a matrix in the BO basis:  
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In the last equality, the first term is just the BO approximation; the 
product basis functions are eigenfunctions of the separate nuclear 
and electronic Hamiltonians.  The terms on the second and third lines 
are the corrections to the BO approximation; they arise because the 
electronic wavefunction depends (parametrically) on the nuclear 
coordinates and the magnitude of the corrections will depend on the 
rate of change (gradient) of the electronic wavefunction as we change 
our nuclear configuration.  If the electronic state changes rapidly over 
a small distance, we expect these terms to be large. 
 
This representation of the Hamiltonian is called the coupled channel 
representation: each electronic state represents a different “channel” 
and the Hamiltonian governs the coupling between those channels. 
Before we move on to discuss when this happens, we note that the 

third term (involving ( ) ( )RR iIi Ω∇Ω
2

' , called the diagonal BO 

correction) is usually quite small, and we will not be concerned with it.  

The second term (involving ( ) ( )RR iIi Ω∇Ω ), on the other hand, can 

be quite large.  It is usually called the non-adiabatic coupling. 

c. Non-Adiabatic Effects 

 
When does the BO approximation fail?  This is a tricky question.  One 
might be tempted to conclude that it will fail whenever the nuclei are 
light but this turns out not to be the major problem.  
 
Let us consider the coupled channel Hamiltonian and take the first 
term (the BO result) as the zeroth order Hamiltonian and treat the 
second term as a perturbation (we neglect the small diagonal BO 
correction).  Looking at the coupled channel equation, the matrix 
elements of the zeroth order Hamiltonian are: 
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In order to do perturbation theory, we need an operator that has 
these matrix elements.  To get from a matrix to an operator, we use 
the fact that, in general, an operator is uniquely determined by its 
matrix elements: 
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In this case, α and β are compound indicies – they denote a 
particular choice of i,J. It turns out to be simplest to guess the 

operator 0Ĥ  and prove that it has the right matrix elements.  Thus, 

assume that 
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where, by definition, the nuclear momentum operator only acts on the 
nuclear wavefunction  and does not effect the parametric 
dependence of the electronic wavefunction on R .  Then, 
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Which is identical to the original set of matrix elements. 
 

It is a little more complicated to write the second term in operator 
form.  The matrix elements of our perturbation are given by: 
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Where, on the last line, we have defined the non-adiabatic coupling 
matrix by: 
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This is a rather unusual matrix in that each of its elements is a 
vector.  What does this vector tell us?  Well, first, we note that it 
comes from the gradient of the electronic wavefunction with respect 
to the Ith nuclear coordinate.  The direction of this gradient tells us the 
direction in which the electronic wavefunction is changing the fastest, 
while its magnitude tells us how large this change is in an absolute 
sense.  One then takes the overlap of this gradient with the electronic 
function 'iΩ .  This tells us, as we vary R , how much the change in iΩ  

looks like a change from the current electronic state ( iΩ ) to another 

( 'iΩ ).  Hence, there is a wealth of information here; I

ii ',d  tells us how 

likely non-adiabatic events are (through its magnitude) what physical 
motions it can be associated with (through its direction) and which 
electronic states are involved (because of the overlap of the gradient 
of iΩ  with 'iΩ ). 

 
We are now able to guess the form of our perturbation operator: 
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First, we verify that this gives the desired matrix elements: 
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which is clearly the correct result, and so we conclude we have the 

right operator representation of V̂ . Now, this is a rather unusual 
perturbation, as it depends on the momentum of the nuclei.  This 
means that the probability of a non-adiabatic event will depend on 
how fast the nuclei are going.  If they are moving rapidly, the 
perturbation is larger and non-adiabatic effects are expected to be 
larger. 
 
What does this tell us about when the BO approximation is expected 

to break down?  Well, our BO states are eigenstates of 0Ĥ  and this 

will cease to be a good approximation to the eigenstates of Ĥ  when 



V̂  is “large”.  We have 
already encountered the 
most common cause for 
this: if two eigenstates 

of 0Ĥ  are degenerate 

then V̂  is always 
“large”.  What does this 
mean?  Well, if we plot 
the adiabatic electronic 
energies as curves that 
are functions of R, then 
a degeneracy can occur 
if two of these curves 
cross, as shown in the figure at right.  In this case, our physical 
picture of the nuclear motion occurring on only one potential surface 
will fail  and we need  a linear combination of BO states on both 
surfaces to get a reasonable starting point 

( ) ( ) ( ) ( ) ( )RRRRR 22;'211;1 ΩΦ+ΩΦ≈Ψ JJ cc  

Note that we would 
have the same problem 
if the two states almost 
cross (a so-called 
“avoided crossing”), as 
illustrated in the figure at 
right.  Thus we see that 
the Born Oppenheimer 
approximation fails 
when two electronic 
states (almost) cross. 
Note that thermal 
fluctuations are unlikely 
to probe these 
crossings: the energy 
required to approach a 
crossing is typically the characteristic energy of an electronic 
excitation (1-2 eV), which is quite a lot of energy.  Hence, non-
adiabatic transitions are only relevant in two situations: 1) if the 
molecule is photoexcited, either with a large amount of vibrational or 
electronic energy 2) if there are low-lying electronic excited states.  
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The latter is true, for example, in a metal, which has a continuum of 
low-lying excited states. 
 

d. Diabatic States 

 
In the adiabatic (BO) representation, we found we could write the 
Hamiltonian as 
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where the first term was the BO Hamiltonian and the second was the 
nonadiabatic coupling, which generates transitions between the BO 
states.  The nonadiabatic coupling is a bit difficult to deal with, and so 
we’d like to get rid of it.  To this end, note that the nonadiabatic 
coupling only arises because the electronic wavefunctions change 
with R, which arises because the electronic states are eigenstates of 
an R–dependent Hamiltonian: 

( ) ( ) ( ) ( )RRRR iiiel EH Ω=Ωˆ  

We can get rid of the R–dependence by choosing a fixed, complete 
basis for the electrons.  There are, of course, many possible choices 
in this case, but generically one calls any fixed basis of electronic 
states a diabatic basis.  Thus, for example, one can expand the 
adiabatic states in terms of the diabatic states: 
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By definition, the diabatic electronic states do not depend on R  and 

so ( ) 0', =Rd
I

ii
.  Hence, the terms involving the nuclear kinetic energy 

are exceedingly simple in the diabatic representation.  The electronic 
Hamiltonian is more complicated, however, because the diabatic 

states do not diagonalize elĤ .  Thus, the full Hamiltonian in the 

diabatic basis is given by: 
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where the matrix elements of the electronic Hamiltonian are given by 
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In the adiabatic basis, this matrix would be diagonal, but in the 
diabatic basis, it is the source of transitions between the surfaces.  In 
practice, the diabatic basis is most useful very near a crossing or 
avoided crossing. 
 
In practice, it is usually not possible to find strictly diabatic electronic 

states for which ( )Rd
I

ii ',
 vanishes everywhere, and indeed such states 

are not terribly useful since a large number of strictly diabatic states 
would be required to describe the electronic structure.  In practice, 
one instead wishes to find the linear combination of a small set of 
adiabatic states that is maximally diabatic: 
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where N is the number of adiabatic states (often 2) that we are 
interested in.  If there is one nuclear degree of freedom, we can do 

this by choosing our maximal diabatic states so that ( )Rd ',ii
 is 

diagonal; that is so that 
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Thus, in this case, the diabatic basis becomes the set of electronic 
states that diagonalize the nuclear kinetic energy operator, whereas 
the adiabatic basis diagonalizes the electronic Hamiltonian.  
 

e. Electron Transfer 

 
T illustrate some of the important points about when the Born-
Oppenheimer approximation is (and is not) a good approximation, it is 
useful to work an example.  Here, we will consider electron transfer 
between a donor (D) and an acceptor (A), coupled by some nuclear 
coordinate R. For simplicity, we will ignore all the other nuclear 
coordinates in this problem, so our nuclei will “live” in one dimension. 
Furhter, we will only be interested in two states, “electron on donor” 

(which we will denote 1 ) and “electron on acceptor” (which we will 

denote 2 ).  These are clearly diabatic states because they do not 

change with R.  We’ll be interested in finding out what the appropriate 
adiabatic states are for this situation and we will discuss when these 
states are useful.  



 
In order to use these 
states, we need to be able 
to represent the electronic 
Hamiltonian in the diabatic 
basis.  To this end, 
suppose the diabatic 
matrix elements are given 
by: 
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The two diabatic surfaces 
are shown at right; clearly, 
there is a crossing 
between the two a some 
value of R between -R0 
(the optimal distance for the donor) and +R0 (the optimal distance for 
the acceptor).  The assumption that the coupling (V12) between the 
two states is constant is merely the simplest; more complicated forms 
could also be imagined. 
 
Now, the adiabatic state energies are the eigenvalues of the 
electronic Hamiltonian for a given R.  In the diabatic basis, 
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Hence, the adiabatic energies are: 
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If we plot these two energies as a function of R, we obtain the picture 
below.  Note that these two surfaces almost intersect, but not quite.   
This is usually referred to as an “avoided” crossing.  It can be shown 
that these intersections never (or at least almost never) occur if there 
is only one nuclear dimension.  The argument proceeds as follows: in 
order for E+ to equal E-, the term under the square root above would 
need to be zero.  In order for this to be true we need to satisfy two 
equations: 
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( ) ( )RVRV 2211 =  and 0)(12 =RV  

If we only have one degree of freedom (R) it is, generally, not 
possible to satisfy two independent equations. Though this is not a 
particularly rigorous proof (there are many exceptions based on 
symmetry and just blind luck) this observation holds quite generally 
and is known as the “no 
crossing rule”: adiabatic 
states cannot cross in 1D.  
Thus (except in the case 
of “accidental” solutions) 
one thus needs at least 
two degrees of freedom 
to get an intersection, and 
even then the intersection 
only occurs at a point.  
This point is called a 
“conical intersection” 
because this is the 
characteristic shape of 
two surfaces that touch at 
a point.  Further, even in 
more than two 
dimensions, an 
intersection between two adiabatic surfaces is called a “conical 
intersection”.  
 
Now, the adiabatic states can be written in terms of the eigenvectors 
of the electronic Hamiltonian as: 

( ) ( ) 21 21 RcRc
++ +=+   and  ( ) ( ) 21 21 RcRc

−− +=−  

The actual forms of the coefficients are rather complicated and will 
not be reproduced here.  We will satisfy ourselves with the qualitative 

observation that, for large, negative R we have 1≈+  while for large 

positive R we have 2≈+ .  Thus, between -R0 and +R0 the lower 

adiabatic state changes character – it goes from looking mostly like 
“electron on donor” to looking mostly like “electron on acceptor.  
Thus, while the adiabatic states do not cross, they do change rapidly 
between -R0 and +R0 to “avoid” each other.  
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What are the consequences of this?  Well, the adiabatic states factor 
in to the nonadiabatic coupling as follows: 
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In priniciple, there are four couplings (d++, d+-, d-+ and d--).  However, 
we note that if we replace each of the adiabatic states by the same 
state multiplied by a phase, then d++ becomes: 
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And similarly for d--. Now, multiplying an eigenstate by a constant 
gives a state that is indistinguishable from the original state.  It is 
therefore conventional to choose the phase of each eigenstate so 
that the diagonal nonadiabatic couplings vanish.  Then, we only 
need to worry about the off-diagonal term: 
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R
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This term will be large when the “+” state changes rapidly with R.  We 
have already seen that this occurs between -R0 and +R0.  Thus, the 
nonadiabatic coupling is large in the vicinity of an avoided 
crossing. 
 
Thus, the picture of electron transfer is as follows: if the nuclei move 
very, very slowly the adiabatic picture is appropriate.  Then, as the 
nuclei move from -R0 to +R0 the electron moves from donor (state 1) 
to acceptor (state 2) without any difficulty.  Nonadiabatic effects are 
small because the nuclear momentum is small, making the 

perturbation ( )RV +−⋅= dPˆ  negligible.  However, if the nuclei move 

quickly, then the adiabatic approximation begins to break down – the 
electron does not have enough time to transfer from donor to 
acceptor.  This shows up as an increase in the size of the 

perturbation ( )RV +−⋅= dPˆ , which causes transitions between the 

adiabatic states.  This non-adiabatic transition is easily described in 
the diabatic basis, because the movement from the lower adiabatic 
surface to the upper one corresponds to staying on the same diabatic 
surface.  Thus, if the nuclei move quickly through the avoided 
crossing region, the electronic wavefunction will not have time to 



react and a diabatic picture is appropriate.  On the other hand, slow-
moving nuclei are difficult to describe in the diabatic basis (the 
dynamics involves many transitions between the diabatic states) and 
are more easily dealt with in the adiabatic basis. 


