
II. The Machinery of Quantum Mechanics 
Based on the results of the experiments described in the previous 
section, we recognize that real experiments do not behave quite as 
we expect.  This section presents a mathematical framework that 
reproduces all of the above experimental observations.  I am not 
going to go into detail about how this framework was developed.  
Historically, the mathematical development of QM was somewhat 
awkward; it was only years after the initial work that a truly rigorous 
(but also truly esoteric) foundation was put forth by Von Neumann.  At 
this point, we will take the mathematical rules of QM as a hypothesis 
that is consistent with all the experimental results we have 
encountered.   
 
Now, there is no physics or chemistry in what we are about to 
discuss; the physics always arises from the experiments.  However, 
just as Shakespeare had to learn proper spelling and grammar before 
he could write Hamlet, so we must understand the mathematics of 
QM before we can really start using it to make interesting predictions.  
This is both the beauty and the burden of physical chemistry; the 
beauty because once you understand these tools you can answer 
any experimental question without having to ask a more experienced 
colleague; the burden because the questions are very hard to 
answer. 

A. Measurements Happen in Hilbert Space 
All the math of QM takes place in an abstract space that called Hilbert 
Space.  The important point to realize is that Hilbert Space has no 
connection with the ordinary three dimensional space that we live in.  
For example, a Hilbert Space can (and usually does) have an infinite 
number of dimensions.  These dimensions do not correspond in 
any way to the length, width and height we are used to.  However, 
QM gives us a set of rules that connect operations in Hilbert Space to 
measurements in real space.  Given a particular experiment, one 
constructs the appropriate Hilbert Space, and then uses the rules of 
QM within that space to make predictions.   



1. Hilbert Space Operators Correspond to Observables 
The first rule of QM is: all observables are associated with operators 
in Hilbert Space. We have already encountered this rule, we just 
didn’t know the operators lived in Hilbert space.  Now, for most 
intents and purposes, Hilbert Space operators behave like variables: 
you can add them, subtract them, multiply them, etc. and many of the 
familiar rules of algebra hold, for example ( ZYX ˆ,ˆ,ˆ are arbitrary 
operators): 

Addition Commutes: XYYX ˆˆˆˆ +=+     
Addition is Associative: ( ) ( )ZYXZYX ˆˆˆˆˆˆ ++=++    

   Multiplication is Associative: ( ) ( )ZYXZYX ˆˆˆˆˆˆ =  
However, the multiplication of operators does not commute: 

Multiplication does not commute: XYYX ˆˆˆˆ ≠  
We already knew that this was true; in the case of the polarization 
operators we showed that xP̂  and 'x̂P  do not commute: 

yxxy PPPP ˆˆˆˆ
'' ≠  

Thus, the association of observables with operators allows us to 
describe the first quantum effect we discovered in the experiments: 
non-commuting observations.  Also, note that uncertainty comes 
solely from the fact that the order of measurements matters; hence 
we can’t know the result of both measurements simultaneously. 
 
Now, deciding that operators have all the above features (e.g. 
associative multiplication, commutative addition) may seem rather 
arbitrary at first.  For example, why does operator multiplication need 
to be associative?  The deep result that motivates this is a theorem 
that asserts that if a set of operators satisfies the above relations 
(together with a few other benign conditions) guarantees that 
operators in Hilbert space can always be represented by 
matrices.  Hence a better way to remember how to multiply and add 
operators is to remember that they work just like matrices; any 
relation that is true for two arbitrary matrices is also true for two 
arbitrary operators.  

2. The System is Described by a State Vector 
In Hilbert Space, the system is represented by a state.  Again, we 
already knew this, but the fact that the states live in Hilbert space lets 
us know some new facts.  First, we note that there are three simple 



operations one can execute on a state.  First, one can multiply it by a 
constant to obtain a new state: 

cc ψψ =  
In general, this constant can be complex. It does not matter which 
side the constant appears on.  The second thing one can do is to add 
two states together to make a new state: 

21 ψψψ +=  

As we have seen before, ψ  is a superposition of the two states 

1ψ  and 2ψ .  Finally, there is one new operation we need to 
introduce, called Hermitian conjugation.  By definition, the 
Hermitian conjugate (dentoed by ‘†’) is given by: 

( ) ** 2211

†

2211 cccc ψψψψ +=+  

( ) 2211

†

2211 ** ψψψψ cccc +=+  
Where ‘*’ denotes complex conjugation. Further, Thus, the Hermitian 
conjugate takes kets to bras (and vice versa) and takes the complex 
conjugate of any constant.  Hermitian conjugation in Hilbert space is 
analogous to the transpose in a traditional vector space. Thus: 

( )T=
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⇔= †ψψ  

To be precise, we will ultimately find that Hermitian conjugation is the 
same as taking the transpose and complex conjugate simultaneously. 
Finally, we note one important fact about a Hilbert space.  There 
always exists a basis of states, { }αφ , such that any other state can 
be written as a linear combination of the basis states: 

�=
α

αα φψ c  

We have as yet said nothing about the number of these states.  In 
general, the basis for a Hilbert space involves an infinite number of 
states.  The definition above assumes they are denumerable (i.e. we 
can assign them numbers i=1,2,3,4…)  In some situations, the basis 
will be continuous.   In these situations, we can replace the sum by 
an integral: 

( ) αφαψ α dc�= . 



3. Bra-Ket Gives Probability 

Now, in order to make predictions, we need to understand a few 
properties of the bra-ket product.  To be mathematically precise, bar 
and ket states are dual to one another.  The illustration in terms of 
vectors is invaluable in understanding what this means, because 
column vectors and row vectors are also dual to one another.  Thus, 
essentially all the properties of row and column vectors can be 
transferred over to bra and ket states.  Most notably, one can define 
an overlap (or inner product) analogous to the dot product for 
ordinary vectors. 
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⇔ .ψχ  

The overlap between a bra and a ket has all the same intuitive 
content as the dot product: it tells you how similar the two states are.  
If the overlap is zero, the two states are orthogonal.  We can also 
define the norm of a state by: 

ψψψ =2  
One of the properties of the bracket product in Hilbert space is that 
the norm of a state is always greater than or equal to zero and it can 
only be zero for the trivial state that corresponds to the origin.  It turns 
out that the norm of the state has no physical relevance; any value 
between 0 and � gives the same physical answer.  In practice it is 
often easiest to multiply the wavefunction by a normalization 
constant, 2/1−= ψψc , that makes the norm 1.  This does not affect 
our predictions but often makes the expressions simpler.  If two 
states are both orthogonal to one another and normalized, they are 
said to be orthonormal. 
 
As mentioned above, operators can be associated with matrices.  It is 
therefore natural to associate an operator acting on a ket state with a 
matrix-vector product: 
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⇔ψÔ  

This allows us to define the Hermitian Conjugate (HC) of an operator 
by forcing the HC ψÔ  to be the HC of ψ  times the HC of Ô : 



( ) †† ˆˆ OO ψψ ≡  

This defines †Ô , the HC of Ô .   This is also called the adjoint of the 
operator Ô .  If an operator is equal to its adjoint, it is hermitian.  This 
is analogous to a symmetric matrix. 
 
It is important to notice that the order of operations is crucial at this 
point.  Operators will always appear to the left of a ket state and to 
the right of a bra state.  The expressions 

OandO ˆˆ ψψ  
are not incorrect; they are simply useless in describing reality.  This 
might be clearer if we write the associated matrix expressions: 
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and  

One can give meaning to these expressions (in terms of a tensor 
product) but the result is not useful. 
 
We are now in a position to restate the third rule of QM: for a system 
in the sate ψ ,the expectation value of an observable, O , is given by: 

ψψ
ψψ O

O
ˆ

ˆ = . 

Note that this equation simplifies if ψ  is normalized, in which case 

ψψ OO ˆˆ = . 

4. Operators and Eigenvalues 

One important fact is that operators in Hilbert Space are always 
linear, which means: 

( ) 2121
ˆˆˆ ψψψψ OOO +=+  

This is another one of the traits that allows operators to be 
represented in terms of a matrix algebra (they call it linear algebra for 
a reason). 
 
Now, one can associate a set of eigenvalues, αo , and eigenstates, 

αψ , with any linear operator, Ô , by finding all of the solutions of the 

eigenvalue equation: 



ααα ψψ oO =ˆ  
This allows us to state the final two rules of QM: when measuring the 
value of the observable O , the only possible outcomes are the 
eigenvalues of Ô .  If the spectrum of eigenvalues of Ô  is discrete, 
this immediately implies that the resulting experimental results will be 
quantized, as we know is quite often the case.  If the spectrum of 
eigenvalues of Ô  is continuous, then this rule gives us little 
information. And, finally, after O  has been observed and found to 
have a value αo  then the wavefunction of the system collapses into 

the eigenstate αψ .   
 

5. Some Interesting Facts 

Before moving on to describe the experiments from the previous 
section in terms of our newly proposed rules, it is useful to define a 
few concepts.  The first is the idea of an outer product.  Just as we 
can write the inner product as (bra)x(ket), we can write the outer 
product as (ket)x(bra).  This is in strict analogy to the case of vectors 
where the outer product is a column vector times a row vector: 
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⇔ψχ  

As we have seen in the polarization experiments, the outer product is 
an operator; if we act on a state with it, we get another state back: 

( ) ( )φψχφψχφψχ ≡== cc  
This is, again, in direct analogy with vector algebra, where the outer 
product of two vectors is a matrix.  One interesting operator is the 
outer product of a ket with its own bra, which is called the density 
operator: 

ψψψ =P̂  
If ψ  is normalized, this operator happens to be equal to its own 

square: 
ψψψ ψψψψψψ PPP ˆˆˆ ===  

 
 1 



This property is called idempotency.  Hence, we see that the density 
operator for any quantum state is idempotent.  Further, we see that 

ψP̂   acting on any state gives back the state ψ  times a constant: 
( ) ( )φψψφψψφψψ ≡== cc  

By this token, density operators are also called projection 
operators, because they project out the part of a given wavefunction 
that is proportional to ψ . 

 
One very important fact about Hilbert space is that there is always a 
complete orthonormal basis, { }iφ , of ket states.  As the name 

implies, these states are orthonormal (the overlap between different 
states is zero and each state is normalized) and the form a basis (any 
state ψ  can be written as a linear combination of these states). We 

can write the orthonormality condition in shorthand as 

ijji δφφ =  

Where we have defined the Kroenecker delta- a symbol that is one if 
i=j and zero otherwise.    
 
The first important results we will prove concern Hermitian operators.  
Given a Hermitian operator, Ĥ , it turns out that 1) the eigenvalues of 
Ĥ  are always real, and 2) the eigenstates can be made to form a 
complete orthonormal basis.  Both these facts are extremely 
important.  First, recall that we know experimental results (which 
correspond to eigenvalues) are always real numbers; thus, it is not 
surprising that every observable we deal with in this course will be 
associated with a Hermitian operator.  Also, note that up to now we 
have appealed to the existence of an orthonormal basis, but gave no 
hints about how such a basis was to be constructed.  We now see 
that every Hermitian operator associated with an observation 
naturally defines its own orthonormal basis!   
 
As with nearly all theorems in chemistry, the most important part of 
this is the result and not how it is obtained.  However, we will outline 
the proof of this theorem, mostly to get a little more practice with ins 
and outs of Dirac notation. 
______________________________________________________ 
1) Consider the eigenvalue equation and its Hermitian conjugate: 



*ˆˆ
αααααα ψψψψ hHhH ConjugateHermitian = →=             

Now we apply one of our tricks and take the inner product of the left 
equation with αψ  and the inner product of the right equation with 

αψ : 

αααααααααα ψψψψψψψψ *ˆˆ hHhH ==	  
We see that the left hand sides (l.h.s.) of both equations are the 
same, so we subtract them to obtain: 

( ) αααα ψψ*0 hh −=	 . 
In order to have the right hand side (r.h.s) be zero, either: 

( )*0 αα hh −=    or   αα ψψ=0  

Since we defined our states so that their norms were not zero, we 
conclude that  

( )*0 αα hh −=  
Which implies that αh  is real  
 
2) Here, we need to prove that the eigenstates are a) normalized, b) 
orthogonal and c) form a complete basis.  We will take these points in 
turn.   

a) The eigenstates can be trivially normalized, since if αψ  is 

an eigenstate of Ĥ , then so is αψc : 

( ) ( )ααααααα ψψψψψ chchHccHcH ==== ˆˆˆ  
So given an unnormalized eigenstate, we can always normalize 
it without affecting the eigenvalue  

 
b) Consider the ket eigenvalue equation for one value of α  and 
the bra equation for 'α  

'''
ˆˆ

αααααα ψψψψ hHhH ==  

where we have already made use of the fact that *
'' αα hh = .  

Now, take the inner product of the first equation with 'αψ  and 

the second with αψ .  Then: 

αααααααααα ψψψψψψψψ '''''
ˆˆ hHhH ==	  

Once again, the l.h.s. of the equations are equal and 
subtracting gives: 

( ) αααα ψψ ''0 hh −=	  



Thus, either: 
( )'0 αα hh −=    or   αα ψψ '0 =  

Now, recall that we are dealing with two different eigenstates 
(i.e. 'αα ≠ ).  If the eigenvalules are not degenerate (i.e. 

'αα hh ≠ ), then the first equation cannot be satisfied and the 
eigenvectors must be orthogonal.  In the case of degeneracy, 
however, we appear to be out of luck; the first equality is 
satisfied and we can draw no conclusions about the 
orthogonality of the eigenvectors.  What is going on?  Notice 
that, if hhh ≡= 'αα , then any linear combination of the two 

degenerate eigenstates, 'αα ψψ ba + ,  is also an eigenstate 
with the same eigenvalue: 

( ) ( )''''
ˆˆˆ

αααααααα ψψψψψψψψ bahbhahHbHabaH +=+=+=+  
So, when we have a degenerate eigenvalue, the definition of 
the eigenstates that correspond to that eigenvalue are not 
unique, and not all of these combinations are orthogonal to one 
another.  However, there is a theorem due to Gram and 
Schmidt – which we will not prove – that asserts that at least 
one of the possible choices forms an orthonormal set.  The 
difficult part in proving this is that there may be two, three, 
four… different degenerate states.  So, for non-degenerate 
eigenvalues, the states must be orthogonal, while for a 
degenerate eigenvalue, the states are not necessarily 
orthogonal, we are free to choose them to be orthogonal  

 
c) The final thing we need to prove is that the eigenstates form 
a complete basis.  Abstractly, this means that we can write any 
other state as a linear combination of the eigenstates: 

�=
α

αα ψχ c  

This turns out to be difficult to prove, and so we simply defer to 
our math colleagues and assert that it can be proven  

_______________________________________________________ 
 
Finally, it is also useful to define the commutator of two operators: 

[ ] ABBABA ˆˆˆˆˆ,ˆ −≡  
If two operators commute, then the order in which they appear does 
not matter and the commutator vanishes.  Meanwhile, if the operators 



do not commute, then the commutator measures “how much” the 
order matters. 


