
VI. Angular momentum 

Up to this point, we have been dealing primarily with one dimensional 
systems. In practice, of course, most of the systems we deal with live 
in three dimensions and 1D quantum mechanics is at best a useful 
model. In this section, we will focus in particular on the quantum 
mechanics of 3D systems. Many of the elements we discovered for 
one dimensional problems will carry over directly to higher 
dimensions; however, we will encounter certain effects that are 
qualitatively new, and we will spend most of our time exploring these 
new phenomena. 

The first change comes in how we associate operators with classical 
observables. In one dimension, we had 
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In three dimensions the position and momentum are vectors and so 
we must substitute vector calculus for the single variable results: 
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Where r is the position vector and vector quantities will always be 
indicated in bold face. Note that the operators that correspond to 
different axes (i.e p ˆ x and z ˆ ) commute with one another, while the 
position and momentum along a given axis (i.e p ˆ x and x ˆ ) obey the 
normal commutation relation. We can summarize this in a few 
equations: 

r ri p r j ]= i Zδ[ p ˆ i , p ˆ j ]= 0 [ ̂ , ̂  ]= 0 [ ̂ , ˆj i ij 

where i and j can take the value 1,2 or 3 to indicate the x ˆ , y ˆ and z ˆ 
components of each vector. 

a. Rotations 

The first difference between 3D and 1D is the possibility of performing 
a rotation of our system about one of the three axes. Let us denote a 
rotation of an angle θ about a unit vector n by R (θ ) . Clearly, R (θ )n n 



is a matrix (it transforms vectors to vectors). Further, it is clear that 
R (θ ) R (θ ) ≠ R (θ ) R (θ ) (rotations about different axes do not n m m n 

commute). Note that this has nothing to do with quantum mechanics 
and everything to do with geometry! 

It is easy to verify that the rotation operators associated with the three 
Cartesian axes are: 
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Note that the rotation matrices for x and y can be obtained from the z 
matrix by the cyclic permutation x → y , y → z , z → x . This must 
always be the case, because our labeling of the x, y and z axes is 
totally arbitrary! The only thing we must be careful of is that the “triple 
product” z ⋅ ( x × y ) is always +1. This defines the handedness, or 
chirality, of our coordinates. Cyclic permutations preserve the 
handedness while a simple interchange of two axes (i.e. x ↔ y ) will 
flip the sign of the triple product, reverse the handedness of our 
coordinates and give us the wrong answer (try it and see). This cyclic 
invariance is very important because it reduces the work we need to 
do by a factor of 3, but we must be careful to apply it correctly. In the 
future, we can therefore state the result for the z axis and then infer 
the results for x and y by cyclic permutations. 

These rotations are unitary (i.e. RTR = 1 ) and like many unitary 
J i / Ztransformations they can be written in the form e − θ where J is called 

a generator. For example, the generator of rotations about the z axis 
is 
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θThis can be verified by actually computing e J i z / Z and checking that it 

gives the rotation operator discussed earlier. 

b. Commutation Relations 

We now wish to compute the commutator between J and J y :x 
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As discussed previously, all other commutators between the 
elementary generators of rotations can be deduced from the above 
relation by cyclic permutations of the indices. These are the 
fundamental commutation relations for angular momentum. In fact, 
they are so fundamental that we will use them to define angular 
momentum: any three transformations that obey these commutation 
relations will be associated with some form of angular momentum. 

It is also useful to define the vector J ≡ J i + J j + J k and the scalar x y z 

J2 J J = ⋅ = J 2 + J 2 + J 2 . It is easy to show that while the elementary x y z 

generators do not commute with J they do commute with J2 : 
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Note that these J matrices are not quantum operators – they are 
simply transformations of 3D space. 

However, we can use this as a definition of angular momentum in the 
quantum case. Specifically, we assume that the quantum operators 
(which act in Hilbert space) obey the same commutation rules as the 
classical transformations (which act in real space). Hence, quantum 

ˆ ˆ Z ̂angular momentum operators obey [ J J , y ]= J i and cyclicx z 

permutations thereof. This seems strange at first, but momentarily 
we will show that this rule for associating operators with classical 
variables is consistent with our definitions of r ˆ and p ˆ , which strongly 
supports the new quantization rule. Further, we will later see that the 
same commutation rules apply to a particle’s intrinsic spin angular 
momentum, which cannot be described as some function of r ˆ and p ˆ . 
Hence the commutation relation above actually generalizes the 
standard quantization rules. 

ˆClassically, angular momentum is given by L = r ˆ × p ˆ . Using our 
standard prescription, this means the corresponding quantum 

ˆoperator should be L = r ˆ × p ˆ . We proceed to verify that the 

components of L ˆ obey the expected commutation relations. 
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c. Eigenstates 

Since J ˆ 2 and J ̂ commute, they share common eigenstates. We willz 

denote the eigenvalues of J ˆ 2 and J ̂ by α and β , respectively so that: z 

J ̂β α = β αα β α = β αβ J ˆ 2 , , , ,z 



It is convenient to define the raising and lowering operators (note the 
similarity to the Harmonic oscillator!): 

J ̂ ± ≡ J ̂ ± Ji ̂  
yx 

Which satisfy the commutation relations: 
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 

+ z z ± ±[ J , J − ]= 2 ZJ [ J , J ± ]= ± ZJ [ J , J2 ]= 0 
The raising and lowering operators have a peculiar effect on the 
eigenvalue of J ̂ :z 

ˆ ˆ, , ,J ̂ ( J ̂ ± βα ) = ( [ J ̂ , J ]+ J J ̂ ) βα = (β ± Z) ( J ̂ β α )z z ± ± z ± 

Thus, J ̂ + ( J ̂ − ) raises (lowers) the eigenvalue of J ̂ by Z , hence the z 

names. Since the raising and lowering operators commute with J ˆ 2 

they do not change the value of α and so we can write 
J ̂ ± βα ∝ βα ± Z, , 

and so the eigenvalues of J ̂ are evenly spaced. z 

What are the limits on this ladder of eigenvalues? Recall that for the 
harmonic oscillator, we found that there was a minimum eigenvalue 
and the eigenstates could be created by successive applications of 
the raising operator to the lowest state. There is also a minimum 
eigenvalue in this case. To see this, note that: 
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2 βHence β ≤ α and therefore − α ≤ ≤ α . Which means that there 

are both maximum and minimum values that β can take on for a 
given α . If we denote these values by β max and β min, respectively, 
then it is clear that 

,J ̂ + β α ,= 0 J ̂ − β α m i n = 0 .ma x 

We can then use this knowledge and a trick to determine the 
relationship between α and β max (or β min): 

ˆ J ̂ ˆ J ̂,Ω J + − β α ,= 0 J − + β α m i n = 0ma x 



2 2 ˆ ˆ 2 2 ˆˆ ( ˆ 
y x − J J ˆ )) β α Ω ( J + Ĵ  − J J i , ˆ ( ˆ 
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Ω β = −β min ≡ Zjmax 

So we have that − Zj ≤ β ≤ Zj . Further, since we can get from the 
lowest to the highest eigenvalue in increments of Z by successive 
applications of the raising operator, it is clear that the difference 
between the highest and lowest values [ Zj − (− Zj) = 2Zj ] must be an 
integer multiple of Z . Thus, j itself must either be an integer or a 
half-integer. 
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ll these facts together, we conclude (Define m ≡ b / Z ): 

and 

2where in the first equation, we have noted that 0 ≤ J ˆ 2 = Z j( j + 1) 
implies j ≥ 0 . These are the fundamental eigenvalue equations for all 
forms of angular momentum. 

The other matrix elements we might be interested in are those of the 
raising and lowering operators. As we saw before Ĵ 

± j, m ∝ j, m ± 1 

and so 
±'j , ' J m ˆ j, m = C j ,m δ δ m m ± 1± j , j , 

and one only needs to determine the value of C ± 
j ,m . To this end, 

2 † ˆ 2ˆ ˆj, m = j, J J m j, m = j, J J m ˆ j, m = j, m J ˆ 2 − Ĵ  _ ZĴ  
z j, mĴ  

± ± ± _ ± z 

± 22 21)= Z [ j( j − + m ± m]= C j ,m 

±the phase of C j ,m is undetermined, because the phase of the 

eigenstate j, m is arbitrary. We will choose the phase of j, m so 
±that C j ,m is real and positive which leads to: 



'j , ' J m ˆ j , m = Z j ( j − + m m ± )1 δ δ ± , 1 ) ( j , j m m ± 1 . 


