
VIII. Addition of Angular Momenta 

a. Coupled and Uncoupled Bases 

When dealing with two different sources of angular momentum, Ĵ1 

and Ĵ 
2 , there are two obvious bases that one might choose to work 

in. The first is called the uncoupled basis. Here the basis kets are 
eigenstates of both operators: 

2 j , m ; j2 , m2 = j ( j + 1) j , m1; j2 , m2Ĵ1 1 1 1 1 1 

j , m1; j2 , m2 = m1 j , m1; j2 , m2Ĵ1z 1 1 

2 j , m ; j2 , m2 = j ( j + 1) j , m ; j2 , m2Ĵ2 1 1 2 2 1 1 

j , m ; j2 , m2 = m2 j , m ; j2 , m2Ĵ 2 z 1 1 1 1 

In the case of spin orbit coupling, this would mean that our basis 
states would be simultaneous eigenfunctions of orbital and spin 
angular momentum, and each state would have a particular value for 

,{ m l } and m . Note that this is only possible if (as we assume): s 

ˆ ˆ[J , J2 ]= 01 

otherwise, the two operators would not have simultaneous 
eigenfunctions. This is clearly true for L ˆ and Ŝ since the two 
operators act on different spaces. This really defines what we mean 
by different angular momenta, since operators that do not commute 
will, in some sense, define overlapping – and thus not completely 
distinct – forms of angular momentum. 

This basis is appropriate if Ĵ1 and Ĵ 
2 do not interact. However, when 

the Hamiltonian contains an interaction between these two angular 
momenta (such as Ĵ 

1 ⋅ Ĵ 
2 ), the eigenstates will be mixtures of the 

uncoupled basis functions and this basis becomes somewhat 
awkward. In these cases, it is easiest to work in the coupled basis, 
which we now develop. 

First, note that the total angular momentum is given by: 



J ˆ = J ˆ 
1 + J ˆ 

2 

It is easy to show that this is, in fact, an angular momentum (i.e. 
ˆ ˆ ˆ[J , J y ]= Ji ). We can therefore associate two quantum numbers, jx z 

and m , with the eigenstates of total angular momentum indicating its 
magnitude and projection onto the z axis. The coupled basis states 
are eigenfunctions of the total angular momentum operator. This 
specifies two quantum numbers for our basis states ( j and m ). 
However, as we saw above, the uncoupled basis states were 
specified by four quantum numbers ( j , j2 , m1 and m2 ) and we 1 

therefore need to specify two more quantum numbers to fully specify 
the coupled states. To specify these last two quantum numbers, we 
note that 

2 ˆˆ ˆ 2 ˆ ˆ 2 ˆ ˆ ˆ ˆ[J , J1 z ]= [(J + 2 J ˆ
1 ⋅ J + J 2 ), J ]= [2 J ˆ

1 ⋅ J 2 , Ĵ  ]= 2 [J ˆ
1 , J1 z ]⋅ J ≠ 01 2 1 z 1 z 2 

and similarly for Ĵ 2 z . Thus Ĵ1 z and Ĵ 2 z do not share common 

eigenfunctions with J ˆ 2 . To put it another way, to obtain a definite 
state of the total angular momentum, one must generally mix states 
with different m1 and m2 . All thus leads to the conclusion that neither 
m1 nor m2 can be one of the other quantum numbers that specify the 
coupled basis. 

What about j and j ? Well,1 2 

2 ˆ 2 2 ˆ 2 2 ˆ 2 ˆ[ J J ]= [(J + 2 J ˆ
1 ⋅ J + J 2 ), J ]= [2 J ˆ

1 ⋅ J J 1 ]= 2 [ˆˆ 2 , ˆ ˆ ˆ ˆ , ˆ J J 1 ]⋅ J ≠ 01 1 2 1 2 1 , 2 

2and similarly for J ˆ
2 . Further 

22 ˆ 2 ˆ ˆ[Ĵ , J ˆ
1 ]= [Ĵ  + Ĵ 2 z , J ]= [J , J 1 ]≠ 0 .z 1 z 1 1 z 

2 2Hence, J ˆ 2 , Ĵ 
z , J ˆ and J ˆ

2 share common eigenfunctions, and these 1 

eigenfunctions define the coupled basis. To say it another way, the 
eigenstates of J ˆ 2 do not mix states with different j and j2 . This is1

rather profound – in the case of spin-orbit coupling it means that 
states with different values of l will not be mixed by the coupling. 

The appropriate quantum numbers for the coupled basis are j , m , j1
and j and we have: 2



J ˆ 2 j,m; j , j = j( j + 1) j,m; j , j1 2 1 2 

Ĵ j,m; j , j = m j,m; j , jz 1 2 1 2 

2 j,m; j , j = j ( j + 1) j,m; j , jJ ˆ
1 1 2 1 1 1 2 

2 j,m; j , j = j ( j + 1) j,m; j , jJ ˆ
2 1 2 2 2 1 2 

Typically, certain matrix elements will be easier to compute in the 
coupled basis, while others will be easier to compute in the 
uncoupled basis. Thus, we will often need to transform from one 
basis to the other. Since the coupled and uncoupled bases are both 
eigenfunctions of Hermitian operators, each forms a complete basis 
for the angular momentum and therefore we can write: 

j,m; j , j = � j , ' m ; j , ' m j , ' m ; j , ' m j,m; j , j .1 2 1 1 2 2 1 1 2 2 1 2 
j1 ,' m1 
j2 ,' m2 

However, we have already concluded that J ˆ 2 does not mix states 
with different j and j so: 1 2

j , ' m ; j , ' m j,m; j , j = j ,m ; j2 ,m j,m; j , j δ j , j δ j2 , j '1 1 2 2 1 2 1 1 2 1 2 ' 1 1 2 

As a result the sums over j ' and j ' collapse to delta functions and 1 2

we get: 
j,m; j , j j ,m ; j2 ,m2 j ,m ; j2 ,m2 j,m; j , j= �1 2 1 1 1 1 1 2 

m1,m2 

The transformation coefficients j ,m ; j2 ,m j,m; j , j are known as 1 1 2 1 2 

the Clebsch-Gordon (CG) coefficients (or the vector coupling 
coefficients). The CG matrix is unitary (since it just transforms a 
vector from one basis to another) and by convention its elements are 
chosen real (recall that the phase of j,m; j1, j is arbitrary). 2 

There is one additional symmetry that the CG coefficients possess. 
Notice that: 

ˆ ˆ ˆ0 = (m − J ) j,m; j , j = (m − J1z − J 2 z ) j,m; j , jz 1 2 1 2 

ˆ ˆ� 0 = j ,m ; j ,m2 (m − J1z − J 2 z ) j,m; j , j1 1 2 1 2 

� 0 = (m − m − m2 ) j ,m1; j2 ,m2 j,m; j , j1 1 1 2 

This implies that either the CG coefficient is zero, or 



m = m1 + m2 . 
Thus, for all the non-zero CG coefficients, the index m is actually 
redundant; it is always given by the sum of m1 and m2 . 

b. Recursion Relations 

There are several ways to determine the CG coefficients. Perhaps 
the easiest is to look them up in a book (they have been extensively 
tabulated). However, this method is the most prone to error, unless 
you are very careful to follow all of the sign conventions of the text at 
hand (which may not be the same as the sign conventions in, say 
CTDL or these lecture notes). 

Another route is to simply view the whole thing as an eigenvalue 
problem: one simply wishes to determine the eigenstates of J ˆ 2 in the 
uncoupled basis. The coefficients of the different eigenvectors are 
the CG coefficients. However, this misses out on what is probably 
the most important aspect of angular momentum coupling – the ability 
without any significant computation to predict the allowed 
quantum numbers and their degeneracies. 

We will follow a third route to obtain the CG coefficients. This notes 
that the coefficients are easily obtained by recursion, in a manner 
similar to what we used for the spherical harmonics. First we note 
that there is only one non-zero coefficient for m :max = m1max + m2max 

j1, m1max ; j j, m ; j , j . No other combination of m1 and m22 , m2max max 1 2 

will give the correct total m . Thus, the states j, m ; j , j and max 1 2 

j , m ; j are equal up to an unimportant constant. By 1 1max 2 , m2max 

convention, this constant is chosen to be 1. We can generate the 
other coefficients by successive applications of the lowering operator 
and judicious use of orthogonality constraints. 

To see how this is applied in practice, it is best to use spin-orbit 
coupling as an example. What is the coupled basis for a spin-1/2 
electron with orbital angular momentum l ? We can identify the 
uncoupled quantum numbers: 



j = l m 1 = ml1 

1j 2 = s = 2 m 2 = m s 

ˆ 2ˆAnd we want to determine the eigenstates of Ĵ 2 ≡ ( L + S) and 

J ̂ ˆ= L + S ˆ . We know now that the two states with maximum m are z z z 

equal: 
Coupled: Uncoupled: 

1 ; 1 ,l + 1 , m = l + 2 ; s l = l , ml = s l , + 2 .2 

Applying the lowering operator, we have 
; 1ˆ,l + 1 , m = l + 1

2 ; s l = ( Jl − + J ̂ s − ) l , m = s l , + 2J ̂ − 2 l 

1)( l= ( l + l l + − 1 ) , 2 , ;l l − ;1 s , + 1 + ( s + 1 )( s + − 1 ) s l l , −2 2 

1 +,= 2 l l l − ;1 s , + 2 s l l , − 2, ; 1 

However, we also know that 
1 1 1 , l 2 l 2J ̂ − l + 1 , m = l + 1

2 ; s l = ( l + + + 1 )( l + − − + 1 ) l + 1 , m = l − 1 ; s l 2 2 2 2 2 , 

= 2 l + 1 l + 1 , m = l − 1 ; s l 2 2 , 

Combining these last two expressions, 
2 l 11 1 +,l + 1 , m = l − 2 ; s l = , l l − ;1 s , + 2 s l l , − 2, ; 1 

2 2 l + 1 2 l + 1 
This gives us the expression for the state with the same j , l and s 
but m = m − 1 . One can check that this state is normalized. We max 

can clearly apply this recursively to obtain the states with 
m = m − 2 , m = m − 3 , etc. Clearly this will cease when max max 

1 m = − l − 2 = m mi n . 

To get some insight into what these states look like, we need to make 
our notation a little less explicit, temporarily. First we will delete the 
indices for l and s from all the bra and ket states since these 
quantum numbers are the same throughout the calculation. So, for 
example, j , m ; s l →, j , m and l , ml ; s , ms → ; ms Second, in terms ml 

of the abbreviated state labels, we will write the above relationship 
symbolically 

1 ≈ 1 ≈ 1 + 1l + 1 , l − 2 l + 1 , l − 2 ;1 l + − 2 l ; − 22 2 

where ≈ means roughly “neglecting any constants that are not 
relevant for the point I want to make”. In this case, they are factors 

2 
1 



involving l and s that will be very important for doing calculations but 
impede our understanding at the outset. 

Using this notation, we can write the next lowered state: 
3 ˆl + 1 , l − 2 ≈ Ĵ  

− l + 1 , l − 2
1 ≈ ( J2 2 l 

≈ 

) ( ) 

2 
1 

2 
1 

2 
1 

2 
1 ;ˆˆˆ 

+ 

−+++ −−−− 

ll 

lJJlJ sls 

;1 ;2 

;1 

− − + − 

+ − 

In fact, if we make rows of each of the coupled states we can make a 
flow chart for the different components: 

1l;l + 1 , l + 2
1 + ≈ 22 

l ;1 1 − + l + 1 , l − 2
1 + − ≈ 2 l;2 2 

1 

l ;2 1 − − + l + 1 , l − 2
3 + − ≈ 2 l ;1 2 

. . . 

2 , l1 1 + − ≈ 2l + − + 2 l ;1 l; 1 − + − + 

2 
1 

2 
1 

1 ≈ 1l + 1 , l − 2 − − 2l;2 

So we see that the characteristic action of the lowering operator is to 
connect upper states in ( m , m ) space to states that are below and to l s 

the right of the original state. This action is limited by the fact that 
ml cannot be less than − l (this determines the “height” of the ladder) 
and m cannot be less than − 12 (this determines the widths of the s 

rungs). 

c. The triangle rule 

So, have we now created all the coupled states? Well, the total 
number of coupled states in the ladder is 2 j + 1 = 2 ( l + 1 ) = 2 l + 2 .2 



Meanwhile, the number of uncoupled states is 
( )( ) ( ) 242121212 +=+=++ llsl .  Since the number of coupled and 
uncoupled states must be equal, we are missing l2  states.  To find 
the missing states, notice that all of the above states have 2

1+= lj .  
That is, we have presumed that l  and s  point in the same direction 
(equivalently, we have presumed that they are rotating in the same 
plane an in the same sense – clockwise or counterclockwise).  This is 
clearly an unnecessary restriction.  Hence, we expect there to be 
another possibility for j  - specifically, in order to account for all the 
“missing” states, we expect lj 212 =+ , or 2

1−= lj . 
 
To build these missing states, we note that there are two uncoupled 
functions with 1max −= mm :  2

1;1 =−= sl mlm  and 2
1; −== sl mlm .  

Meanwhile, we have only found one coupled state 2
1;1 +−= sl mlm : 

2
1

2
1 ; −=+= lmlj .  Based on the above arguments, we predict there 

will also be a state 2
1

2
1 ; −=−= lmlj .  To find it we note that 1) this 

state must be a linear combination of 2
1;1 =−= sl mlm  and 

2
1; −== sl mlm , since other states do not conserve m  2) the new 

state must be orthogonal to the 2
1

2
1 ; −=+= lmlj , since both states 

are eigenstates of the same operator ( 2Ĵ ).  Using our explicit 
expression for  2

1
2
1 ; −=+= lmlj  (above), it is easy to show that the 

normalized state satisfying 1) and 2) is: 

2
1

2
1

2
1

2
1 ,;,

12

2
,;1,

12

1
,;, −

+
−+−

+
=−=− sll

l

l
sll

l
sllml  

where we have once again made an arbitrary choice of phase, so that 
the coefficient of the first term is positive.  Starting from this state, we 
can apply the lowering operator recursively to generate the l2  states 

slml ,;,2
1−  with all other possible values of m . 

 
How do these ladders generalize to arbitrary 1m  and 2m ?  Well, one 
finds that the possible values of j  fall between two limits: 

2121 jjjjj +≤≤−  
This may be familiar to some of you as the “triangle rule” of angular 
momentum coupling. Physically, this comes from the fact that the 
maximum number of states we can have with a given m  is 12 2 +j  



(assuming 21 jj > ). Pictorially, this corresponds to the maximum width 
of the “rungs” on our ladder.   Now, when we write out a table of the 
m  values for each j , we find: 
 j=j1+j2 j=j1+j2-1 j=j1+j2-2 j=j1+j2-3 
m= j1+j2 X    
m=j1+j2-1 X X   
m=j1+j2-2 X X X  
m=j1+j2-3 X X X X 
… X X X X 
m=-j1-j2+3 X X X X 
m=-j1-j2+2 X X X  
m=-j1-j2+1 X X   
m=-j1-j2 X    
 
We see that having n  different values for j  requires us to have n  
different states with a given value of m .  For example, in the chart 
above, we would need four states with  m=j1+j2-3 to support the four 
values of j  that are listed.  Since the maximum degeneracy of each 
m  level is 12 2 +j , there are 12 2 +j  possible values of j  and we 

conclude that they are 2121 jjjjj +≤≤− . 
 
We can also check that the number of states predicted by the triangle 
rule agrees with what we know from the uncoupled basis.  For each 
value of j  we have 12 +j  states, so the total number of states is (if 
we assume that 21 jj > ): 

( ) ( ) ( ) ( )1)(21)1(2...1)1(21)(2 21212121 +−+++−+++−++++ jjjjjjjj . 
Or, rearranging the terms, 
 
( ) ( ) ( ) ( ) 21212121 2122212...2212212 jjjjjjjj −+++−+++−+++++ . 
 
The terms outside the parentheses clearly sum to zero.  Meanwhile, 
there are exactly 12 2 +j  copies of the term in parentheses.  Hence, 
the number of states is 

( )( )1212 21 ++ jj  
which is precisely the number of states in the uncoupled 
representation. 


