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1. The IR rotational-vibrational spectrum of a diatomic 

Let’s study the correlation function for the rotational-vibrational infrared absorption 
spectrum of a heteronuclear diatomic molecule.  We are considering the transitions 
induced by infrared light that is resonant with a vibrational transition with frequency 
much greater than kT, and the frequency of the infrared light is much higher frequency 
than the splitting between rotational levels. We will use the harmonic oscillator and rigid 
rotor Hamiltonians to describe the vibrational and rotational degrees of freedom: 

H0 = Hvib + Hrot 
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Here where M R  is the reduced mass and q is the vibrational coordinate. I is the moment 
of inertia, which is related to the rotational constant by B = = / 4π Ic . So, the state of the 
system will be described by three quantum numbers n J  M  . 

The diatomic will interact with the light through the transition dipole moment.  Since we 
assume that there are no interactions between the vibrational and rotational degrees of 
freedom, we will also partition the dipole operator into two parts: 

ˆ mµ = µ 

where µ̂ is a unit vector oriented along the transition moment (and along the vibrational 
coordinate in this case), and m is the magnitude of the dipole moment, which we take to 
be a weak function of the nuclear coordinate: 

∂ m m m0 += q
∂ q 0 

= m0 + m  q  1 

m0 is the magnitude of the permanent dipole moment and m1 is the amplitude of the 
transition dipole moment. 



For the following, the system will interact with an electric field oriented along the 
ε̂ = ẑ axis of the laboratory. Remember that in describing the probability of occupying an 
initial state, we need to consider both probability of occupying the initial state at 
temperature T and the probability of having a particular orientation in the laboratory 
frame. The initial state of the system will always be isotropically distributed, i.e. equal 
probability of finding a dipole oriented in any direction. 

a) Evaluate the dipole matrix element k ε̂ ⋅ µ A for the interactions between an initial 
′ ′ ′state and a final state using the separation ofA = n J M  k = n J  M  

orientational and vibrational variables.  Calculate this only to the leading order 
expansion coefficient for m. 

b)	 Evaluate the correlation function µ (t ) µ (0)  for a gas phase ensemble of molecules 
at pressures low enough to neglect interactions between molecules.  

/ /c)	 Plot the correlation function for temperatures from B kT >>1 to B kT <<1 but 
neglect temperatures high enough that you need to consider n=2.  Be sure to point out 
the important features of the time-dependent behavior. You will probably want to plot 
the rotational, vibrational and combined contributions separately. For the purpose of 
plotting results, you can use Ω0 = 2000 cm-1 and B = 5 cm-1. 

d) Calculate the analytical form of the spectrum corresponding to the correlation 
functions in (b) and plot the lineshapes.  Point out how the frequency resolved 
features in the spectrum were manifested in the time-dependent behavior in (b). 

e)	 Now lets investigate the role of collisions between molecules in the spectrum, for 
instance as we raise the pressure.  Let’s assume that the rotational phase of molecules 
is randomized by collision with another molecule.  To simulate this we will say that 

⋅ (t )the time evolution of the dipole operator contains an extra term µ t ( )  i( )  ⇒ µ t e φ with 
φ(0)=0. We will treat the time evolving phase as random variable that evolves 
through small shifts, and the probability distribution of a member of the ensemble 
having a certain phase is given by the solution to a diffusion equation in φ: 
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This distribution function would work for small changes in rotational phase with each 
collision. Here ζ is the “phase diffusion constant” which we will take to be equal to 
the mean frequency of collisions from the kinetic theory of gases: 



22π d p c  
ζ =

kT 

(〈c〉 is the mean speed of molecules (8kT/πm)1/2, d is the effective molecular 
diameter). 

Derive an expression for the new correlation function where the ensemble average 
includes the phase variation due to collisions during the time-period t in the 
correlation function. Plot and discuss how this function and the rotational spectrum 
change as the pressure of the gas is increased from ζ >> B to ζ<<B. 

2. Linear Response Theory 

Describe the time-dependent response of an operator A when it is driven by an external 
field f(t) applied to an equilibrium system at time t0=0. The Hamiltonian for our system 
is H t  0 ( )  (( ) = H − f  t  A  = H0 +V  t  ) , so we can treat this problem in the interaction 

picture. We want to describe the non-equilibrium response of an ensemble A t  which ( )
we will get by ensemble averaging the expectation value of A(t). 

a) Show that the time-development of the operator A is given by  

A t I ( ) +
i t

dt f  t  ′  I ( ) I ( ( ) = A  t  ′ ( ) A  t , A  t  ′) , 
= ∫0 

when only terms linear in the external field (first-order terms) are retained. 

b)	 Remembering that the external field is applied equally to all members of the 
ensemble, show that the ensemble response is given by 

A t  ∫0 
τ (( )  = A +

∞
d  f  t  − τ) R (τ) , 

where the linear response function R (τ)  is related to the correlation function by 

τ =  τ R ( )  2 Im CAA ( ) .= 



3. Displaced Harmonic Oscillator Model 

Work through the correlation function description of the electronic absorption spectrum 
for a transition coupled to nuclear motion, using the displaced harmonic oscillator model 
discussed in class. The Hamiltonian for the ground and excited electronic states is given 
by: 

g H  TOT TOT= g + e H  eH0 g e 

2 
2 − 

2TOTH = H + E = 
p 

+ 1 mω0 (Q  d  ) + Ee e e e2m 2 

2 
2H TOT = H + E = 

p 
+ 1 mω0 Q

2 + Egg g g 2m 2 

a) Use the Born-Oppenheimer and Condon approximations to show that at T = 0 K:  
i eiH t / = e−iH t / = g et 0 
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e) Use the relationship 

Â ˆ ˆ Â −[B̂ ,Â ] 

= 

B Be e = e e e 

to get the final form of the dipole correlation function 

t 0 
2 − ω  eg + 2 ( − ω0exp  i  t  d  e i t −1) .µ ( )µ I ( ) =I µeg  ~ 



4. 	 Displaced Harmonic Oscillator Model at Finite Temperature 

(a) Show that the energy gap correlation function for coupling to a single harmonic 
mode is written 
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Here n  is the thermally averaged occupation of the harmonic oscillator. 

( ′( ) + ′′((b) Find the real and imaginary parts of the lineshape function g t ) = g t  ig  t  ) . 

(c) Calculate the lineshape using the short time expansion.  	What is the linewidth and 
how does it scale with temperature for kT � =ω0 ? 


