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Dynamical Quantities:  Visualization of Dynamics

Last time:  absorption spectrum
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The autocorrelation function of the wavepacket created by a short pulse at t = 0 generates the absorption
spectrum.  Our picture is usually in coordinate space only.  What is missing?

We get a microscopic, particle-like picture (F = ma = p·  ) that explains the qualitative features of the
autocorrelation function.

Identifies the local features of the V′e potential that account for the important features in the absorption

spectrum.

Could we get the same information in a time domain experiment?  Certainly.  Short pulse pump/probe.  We
need to create the wavepacket and thus monitor its time evolving overlap with its t = 0 self.

How would we do such an experiment?
What would we observe?
Would there be additional effects that might complicate the picture?

One color pump/probe?  What do we detect?  fluorescence? ionization?  absorption?
Two color pump/probe?

contains
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Let's discuss experimental schemes.

Discussion of observation of |〈Ψ(t)|Ψ(0)〉|2 directly in a time domain experiment:

1. One-color pump-probe:

τ 21

signal (either absorption or stimulated emission) observed by pulse   2

2. One-color pump-probe with polarization selectivity.

* first pulse is circularly polarized
* second pulse is linearly polarized.  It is incident on a crossed polarizer.  The spatial

anisotropy written into the sample by the first pulse alters the polarization state of the second
pulse, permitting some radiation to leak through the blocking polarizer.

3. One color pump-probe with fluorescence or ionization detection.

* time resolution does not permit discrimination against signal produced by first pulse.  Total
signal results from two pulses as a function of delay between pulses.  How does this work?
Problem set!

4. two-color pump-probe with fluorescence-dip or ionizaiton detection.  Stimulated Emission Pumping.
Zewail experiment.

If we try to make the wavepacket envisioned in the Heller picture, how do we deal with non-
idealities?

µ(Q) - usually slow variation with Q, but not when there is a qualitative change in geometry
short pulse, centered at correct λ
negative wavepacket on ground state?
multiphoton processes
spatial and temporal distribution of molecules affected by laser pulse?

Dynamical Quantities

eigenstates are stationary:  no motion
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to get motion you need coherent superposition of at least 2 eigenstates belonging to different E.

How do {ψi} and {Ei} encode understandable motion?

           
There is a huge amount of information in a coherent superposition state prepared by a short
excitation pulse
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How do we reduce this information into something we can view and understand?  Especially when
H is not simple.

1. We can't observe Ψ(t) but we can observe probability density
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Contains both spatial and temporal information.  This is hopelessly complicated.  Need to get rid of
the wavefunctions.

2. density matrix
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This is much better because we have implicitly integrated over the wavefunctions.  It is a matrix of
numbers.  Populations (time independent) along the diagonal and coherences (time
dependent) off-diagonal.

Every element of ρρρρ(t) is separately time dependent, so there is too much information to look at here

without some sort of magic filter.

initial
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ρρρρ is very useful in helping us to design an experiment because

A A T TT AT= = ( )Trace Trace ρρ ρρ† †

We can design A (a detection scheme) to pick out only a few elements in ρρρρ.

Suppose A has simple structure in ψ i
°{ } but not in the eigenbasis.  This is a very common situation.

3. autocorrelation function
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This is almost too simple.  It tells us how a wavepacket moves away from and returns to its t = 0
self.  Real and Imaginary parts.

dephasing, partial recurrences

4. Survival probability
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even simpler.  Real  0 ≤ PI(t) ≤ 1

suppose we have N states in superposition with equal amplitude, N–1/2
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at t > 0 PI(t) → 0, if N is large

trace is invariant to
unitary transformation

1

write ρρρρA in zero

order basis, use
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If N = 2 PI(t) = 
1
2  + 

1
2  cos ω12t

2 limits

dephasing beating

too simple — does not tell where system goes when it is not at I.

5. I → F transfer probability

F is some final or “target” state
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This is beginning to look like a mechanism, but it is necessary to know what to look for.  How to
choose a good ψF?  This is always a serious problem.  Things look simple only when you have found

the right way to look at them!

6. Expectation values of real (coordinate or phase) space quantities, such as 〈Q〉, 〈P〉, 〈Ji〉, 〈Euler angles〉

or state space quantities N a ai i i= †  number operator,

resonance operators a a ai j j
† :1 2 resonance.

These are really useful!

Example — simplest dynamics in state space
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FIGURE 9.4. Dependence of the amplitude and phase of the survival and transfer probability on mixing angle in  ΨI(0) (see
9.1.46, 9.1.47, 9.1.49 and 9.1.50).  PI(t) and PI→F(t) are shown for mixing angles θ=0, π/8, π/4 (maximum amplitude), and π/2
(figure prepared by Kyle Bittinger).

Look at effect of varying mixing angle

θ = 0, π/2 gives PI(t) = 1, PI→F(t) = 0

θ = π/4 maximum 0 ↔ 1 oscillation

θ = π/8 reduced amplitude of oscillation

More than 2 states?  Complicated.

bright state, doorway state, dark state

state selective detection

Courtesy of Kyle Bittinger.  Used with permission.


