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Motion of Center of Wavepacket
Last time:  Discussed experiments to monitor the central quantity

〈Ψ(t)|Ψ(0)〉

in Heller’s picture:  the absorption spectrum, I(ω), is the FT of the autocorrelation function.  Ψ(0) in

the autocorrelation function is the ground state, ′′V Rg( ), vibrational wavefunction g vg, ′′  transferred

vertically onto the excited state potential, ′V Re( ) .

Is there a way to monitor 〈Ψ(t)|Ψ(0)〉 directly in the time domain?  Many suggested schemes.

We need tools to examine various excitation/detection experimental schemes.

Excitation at t = 0, E(0)
Evolution, U(t,0) = e–iHt/h

Detection, D

ρρρρ(t) = U(t,0)E(0)ρρρρ(0)E†(0)U†(t,0)

Observation:  Trace (D ρρρρ(t))

Consider the simplest 3 level system first
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Short excitation pulse
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both eigenstates |1〉 and |2〉 are bright

β = [1 – |α1|
2 + |α2|

2]1/2

αi = ciµ i0 ci describes the intensity, spectral distribution,
phase, and duration of the excitation pulse.

µ i0 is the electric dipole transition moment
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This ρρρρ(t) is obtained by two transformations of ρ(0)

ρρρρ(t) = U(t,0)E(0)ρρρρ(0)E†(0)U†(t,0)

E(0) is the excitation matrix, operating at t = 0, on ρρρρ(0).
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E E( ) ( ) ( )†

* * * * *

* * * * *

0 0 0 0 0

0 0

1 0 0

0 0 0

0 0 0

0 0

0 0

0 0

0 0

0

1 2

1

2

1 2

1

2

1 2

1

2

1 2

ρρ =











































=















β α α
α
α

β α α
α
α

β α α
α
α

β α α
00 0

0 0 0

2
1 2

1 1
2

1 2

2 2 1 2
2















=

















β βα βα
α β α α α
α β α α α

* *

* *

* *

U(t,0) is the time evolution matrix.  If ρ(0) is expressed in the eigen-basis
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as required from |Ψ(t)〉〈Ψ(t)|
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If the bright state is not an eigenstate, it is often convenient to set up ρρρρ(0), E(0), and H in the zero-order

basis set.  Then find the transformation that diagonalizes H and apply it to ρ( )
( )
0
0 .
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Now, we have a choice of several detection schemes.

Detection could involve:

(i) modification of a beam of probe radiation;

(ii) detection of emitted radiation through a filter or monochromator.

Let us consider the latter possibility.

Now there are several more possibilities:

(a) the detector is blind to radiation at ω10 (and ω12);

(b) the detector is sensitive to radiation at both ω10 and ω20 (but not ω12), and both ω10 and ω20

radiation are detected with the same phase;

(c) same as (b) but ω10 is detected with phase opposite that at ω20.

This could be based on a polarization trick.  The 1←0 transition is ∆M = 0 (z-polarized) and

2←0 is ∆M = ±1 (x or y-polarized).  Detection with polarizer at +π/4 and –π/4 would

correspond to cases (b) and (c).

Detection:  I(t) = Trace (D ρρρρ(t))
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For detection of radiation in transition back to |0〉

D
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(a) If we set µ10 = 0, µ20 ≠ 0 (blind to ω10)

I(t) = D22ρ22 = |µ20|
2 |α2|

2

If we set µ20 = 0, µ10 ≠ 0 (blind to ω20)

I(t) = |µ10|
2 |α1|
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(b) If we set µ10 = µ20 = µ, α 1 = α2 = α
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“phased up” at 

Quantum Beats.  100% amplitude, modulation.

(c) if we set µ10 = –µ20 = µ, α 1 = α2 = α

I(t) = 2|µ|2 |α|2[1–cos ω12t]  “phased out” at t = 0

If, instead of both eigenstates being bright, we excite a system with one bright state and one dark state, at
t = 0 we form Ψ(0) = ψbright = cos θψ1 + sin θψ2

Then E and D could be expressed in terms of bright states rather than eigenstates.  In that case, α1 and α2

include cos θ and sin θ factors, and the phase of the Quantum Beats could depend on θ through α1, α2.

eigenstates
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Zewail experiment
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µ00 and µ11 ≠ 0 in zero-order basis

µ10 = µ01 = 0 in zero-order basis

because of He1e0 ≠ 0, both e+ and e– are bright from both g0 and g1.

But e1 is bright from g1 and dark wrt g0
e0 is bright from g0 and dark wrt g1

as a result, detecting at ωe+,g1 is phased up at t = 0 but at ωe+,g0 is phased out at t = 0.  Vice versa for ωe–,g1 and

ωe–,g0.



5.74 RWF Lecture #7 7 – 7

We can use this ρρρρ, E, U, D formalism to describe much more complicated experiments.

* Another sudden perturbation between t = 0 and time of detection.

* Detection could be using a beam of coherent radiation.  Then one would integrate over t.  Off
resonance?  Spectrally not a simple δ-function.

* Include elements of D that correspond to detection via ε εmolecule local oscillator( ) ( )t t+ 2 cross term.

Figure removed due to copyright reasons.


