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5.74 RWF Lecture #8 8 – 1 

Resonance Operators: Equation of Motion 
Last time: tools for describing a pump/probe wavepacket experiment 

*	 ρρρρ(t ≤ 0) incoherent, populations on diagonal 

*	 E(0) excitation matrix. Transforms initial state into coherent superposition: for electronic 
transition get g vg ′′, translated vertically onto upper potential surface 

*	 U(t,0) = e–iHt/h time evolution of t = 0 prepared wavepacket. If ρρρρ(0) = E(0)ρρρρ(t ≤ 0)E† is expressed 

in the eigenbasis, U has simple diagonal form. Otherwise need to express everything in zero-
order basis and transform.

Why? The pluck is almost always a simple zero-order non-eigenstate.


ρρρρ(t) = U(t,0)E(0)ρρρρ(t ≤ 0)E†(0)U†(t,0) 

*	 Now describe the specific nature of the detection operation 

I(t) = Trace(Dρρρρ) 

If you want to sample the ρρρρij(t) element of ρρρρ(t), you want a detection matrix with non-zero Dji element. 

Often we observe something in an experiment like 
†a ai i  
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2 

tΨ( )  Ψ 
and we would like to understand what this implies about the dynamical mechanism 

where does it start? 
how fast does it leave? 
why? 
where does it go next? 
why? 
how fast does it go there? why? 
what fraction gets to the target state? why? 

We build a toy model Heff with the goal of reproducing the early time dynamics. We want to be able to look 
at the toy model and identify the most important dynamical features of that model. 

dynamical feature↔model parameter, dynamical mechanism 

Tools for computing dynamics from Hmodel! or constructing Hmodel from expt. 
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Today: useful ways of monitoring and describing the mechanism of the dynamics encoded in ρρρρ(t). 

(N 2 − N N N  +1)
What do I mean by encoded? N × N ρρρρ(t) matrix. Since ρρρρ is Hermitian, there are + N = 

2 2 
independent t-dependent elements. Too much information. 

Some useful relationships. 

A
 = Trace(Aρρ( ))tt 

=if A ab, then A t = Trace(abρρ) = ∑ ∑  a bjkρkiij 
i j,k 

= ∑ bjkρkiaij 
ijk 

=	Trace(b a)ρρ

Ehrenfest’s Theorem There are many ways tod ∂A 
dih A = [A H] +, replace A  by something that gives moret t dtdt ∂t t insight. 

ihρρ t t˙( )  = [H,ρρ( )] *	 opposite sign of commutator with

respect to Ehrenfest


*	 This is a relationship between matrix 
elements, not expectation values 

Ehrenfest’s Theorem gives us a quantum mechanical form of classical equations of motion 

r
Newton’s	 dr 1 r 

= p
dt m 
r

dp r
V r= −∇  ( )

dt

Hamilton’s 

Q̇ =
∂H


i
 ∂Pi 

Ṗ 
i = −

∂H 
where Pi, Qi are conjugate observables (page 718, of 
HLB-RWF. Poisson’s bracket) Return to these at 

∂Qi the end of 5.74. 

We say that the center of a wavepacket follows Newton’s equations. 
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This is not quite true. 

We would like to say 

d 1 
q =
 p

dt m

d


p = −∇  V ( )q q q=dt 
but this is not quite true


2


H = 
p 

+ V q( )
2m 

Ehrenfest: 

d
ih q = [q  H  ],
t tdt 

2 2ih[q,H ] = 
1 [q,p ] = p

2m 2m 
d 1

Thus q = p . This is what we wanted. This relates the motion of the coordinate-center of the
t tdt m 

wavepacket to the momentum-center of the wavepacket. Recall that even if we write Ψ(0) as ∑ ai iψ ( )q , 
i 

we still specify 〈p〉. 

d
ih p = [p  H  ], 

tdt 

 
, 

i ∂q 
,V q  ih ( )[p H] = 

h  ∂ 
( ) = −  ∇  V q


d

Thus p = −  ∇V  q  ( )  ≠ −∇  V( )q
dt 

This is a gradient of V at the 
center of the wavepacket 
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How large an error do we make if we pretend that 

d 
p = −∇  V( )?q

dt 
Expand V(q) in power series: 

2dV ) + 
1 d V  2

V q( )  = V ( q + (q − q (q = q t )t ) dq 2 dq2 
q = q 

t q q= 
t 

Thus 
0 

dV
V q( )  = V ( q + qq −
( t )tt ) dq q = q t 

21 d V  ( 2 22+ q − 2 q + q t )t t2 dq2 

2 

t )
1 d V

V q( )  − V ( q = ( q q− t 
2 2 )

2 dq2 
q = q 

t σq 

The error one makes in predicting 〈V(q)〉 by pretending that Newton’s equations apply to the center of the 

wavepacket is proportional to 

d V  

dq q 
q 

2 

2 
= q 

σ 

curvature of potential width of wavepacket 

(no curvature, no error) 
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So there are many situations where we can make this useful particle-like approximation even when |Ψ(q)|2 

has lost any resemblance to a particle-like state. 

dV
Similarly, by expanding (which is what we need for 〈∇∇∇∇V(q)〉)about q = 〈q〉 

dq

3dV dV 1 d V
− =
 σqdq dq 2 dq3 

t q = q 
t q = q 

t 

Ehrenfest’s Theorem also allows us to describe (and simplify) the dynamics in “state space” rather than 
coordinate-momentum space. This can be very useful. 

Suppose we can write H = ∑ h j + ∑ h jk
≠j j k  

0hj describes isolated sub-systems. It is the basis for a choice of H( ) = ∑h j that defines basis states 
j

as 1,n1〉2,n2〉 …N,nN〉. Simple (and convenient) product basis (there are often several 

useful choices, e.g. normal vs. local modes of vibration). 

hjk describes couplings between subsystems. It is responsible for dynamics if the pluck produces a 
single product basis (non-eigen) state. 

For example, 

h † h† ω2 †H =
ω1 (a a + a a1 ) + (a a + a a† )
2 1 1 1  2 2 2 2 2  

† † †+ k122 (a a a  + a  a a2 )1 2 2  1 2  

a 1:2 anharmonically coupled pair of harmonic oscillators. 

Recall: 
1 2n = / n1 − 1 annihilationa1 1  n1


†
 1 2/a1 = (n1 + 1) n1 + 1 creationn1


† † †
N1 = a a [a ,a ] = 1 [a ,a j ] = 01 1 i i i 
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Ehrenfest tells us to evaluate some interesting commutators:
 [h12,H] = … do this second 

† † , 1 1 1] + [ a a  h 
[ N H] = [ a a  h  1 1 2  ]
, ,1


†
+[ a a  h 
,1 1 12  ] any operator 
commutes with 
itself 

0 

† 
1
† † h †  h †a a1, 

ω 1 ( a a1 + a a  
2 1, 1 1 2 1 1 1  )


= 

ω 1 [ a a  a a  1]

† † ,+ 

hω 1 [ a a  a a  1 ]2 1 1 1  

† † †a a1 = 1 1
=1 

[ a  a  ] + a a  1 , 1 1 

1 commutes commutes with itself 

† with anything[ a a  h  1] = 0,1 1
Thus 

† ,[ a a  h  ] = 0 a a  † do not operate on h1 1 2 1 1  2 

Finally, 

† † † †[ a a ,k † ] + [ a a ,k122a a a  2 ]1 21 1  122a a a2 1 1 1 2  

† † † † † , ,
( a a  a a  a  ] + a a  a a  a  1 ])= k122 2 2[ 1 1 1  2 2[ 1 1  
† 

† 
a 1 

–a1( a a a  − a a a  2 )= k122 1 2 2  1
†
2

† 

Now look at the other interesting commutator 
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0 

, 
ω1 [h N1] + 

h 
, ,[h H] = 

h 
, 

ω2 [h N2 ] + [h h12 ]12 2 12 2 12 12 

k † † †  † †  , ,= 
hω1 122 ([a a a  a a ] + [a a a  a a1 2 2  1 1  1 2 2  1 1  ])

2 
hω2k122 † † †  †  †+ ([a a a  a a  ] + [a a a  a a, ,1 2 2  2 2  1 2 2  2 2  ]])

2 
khω1 122 (a a a  †= † †  − a a a2 )2 1 2 2  1 2  

† † † 
2 2a a a a a,

2 2a 

†+ (a a  a a  a ] + 2[ †
2 ]), 

hω2k122 
1 2[ 2 2 2 12 

−2a†
2 

 h − 2h  † †  †=
ω1 ω2 

 k122 (a a a  − a a a2 ) 2 1 2 2  1 2  

Change notation 

†Ω =  k122a a a1 2 2 


† † † 
Ω =  k122a a a2 

h

1 2  

12 = Ω + Ω† resonance operator. h12 is Hermitian so 〈Ω+Ω†〉 is real 

[N1, H] = Ω – Ω† rate of change operator 

see 
h(ω1 – 2ω2) this[h12,H] = 2 (Ω† – Ω) 

d
ih = Ω − Ω† pure imaginaryN1dt 

real 

d †ih h12 = h − 2ω2 ) Ω − Ω(ω1dt 

ΩΩΩΩ + ΩΩΩΩ† 
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d
− h12d dtN1 = .Thus 

dt h(ω1 − 2ω2 ) 2 

It is also easy to derive 

d 1 d
N1 = −  N2 . 

dt 2 dt 

Conserved quantity: 2〈N1〉  + 〈N2〉 = 2〈N1〉0 + 〈N2〉0 (polyad quantum number) t t 

The rate of change of population in mode 1 is proportional to 

* k122 strength of coupling


1

* . closeness to “resonance” 

ω1 ω− 2  2 

This algebra is especially useful when there are several different resonance operators. 

This algebra allows us to ask what is the fractional importance of each resonance operator for the dynamics 
of any conceivable pluck. See page 649 of HLB-RWF. 


