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Stationary Phase for Vibration-Electronic Spectra 

Consider two electronic potential energy curves 
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The classical Franck-Condon principle specifies ∆R = 0, ∆P = 0. If ∆P = 0, then the kinetic energy, KE(R), 
must also be unchanged upon excitation 

RKE ′( ) = E ′ − V ′( )R vib


R
KE ′′( ) = E ′′ − V ′′( )R vib 

thus 

E ′ − E ′′ = V ′( ) − V ′′( )R Rvib vib 

which can only be satisfied at special values of R, each of which is a stationary phase point. 

The choice of transition frequency from a given vibrational level of either the lower or upper electronic state 
determines the stationary phase point. This is the R-value (or R-values) at which the transition occurs and 
the region where a piece of the initial state wavefunction is transferred onto the final state potential. 
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The transition frequency 

hν = ∆Te + E ′ − E ′′ = ∆Te + V ′( ) − V ′′( )R Rvib vib 

hν R R− ∆Te = V ′( ) − V ′′ ( ) = V ′(Rsp  ) − V ′′(Rsp  ) 
specified by 
the experimentalist satisfied at Rsp 

Rsp may be swept through a small region of the initial state vibrational wavefunction by systematic variation 
of the center frequency of the probe laser, ν. As Rsp sweeps through lobes of the initial state wavefunction, 

the transition amplitude increases and decreases. The maximum transition amplitude is obtained when Rsp is 
at the maximum of the outermost lobe of the vibrational wavefunction (because the outer turning point is 
always softer than the inner turning point). 

A similar Franck-Condon-like principle applies to Rydberg-Rydberg transitions 

(1 l l  +1)
V r( )  = −  +l r 2µr2 

µ ≈  m ≡ 1e 

l +1
Vl r( )  − V ( )  =
+1 r l 2r 

 1 1  n′2 − n′′2  
∆En n′ ′′ = hc  ℜ

n′′2 − 
n′2 

= hcℜ 
′′2 n n′2 

In Rydberg units hcℜ = 1 

n′ = n″ + m 

2n′2 − n′′2 n′′2 + 2mn  ′′ + m − n′′2


= 
2 2
′′2n n′2 n′′ (n′′ + 2n′′m + m2 )
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Two useful limits: 

∆E

(1) m >> n″ (excitation from low-n″ initial state)


n′n″ = hcℜn″–2


∆E

(2) m << n″ (transition between high Rydberg states)


n′n″ = hcℜ 2mn″–3


Stationary phase requires 

( ) = 
l + 1 

′ ′′ = Vl r( ) − Vl∆En n +1 rsp sp 2rsp 

/ 
l( + 1)n′′ 2 1 2 


Case (1) rsp =  

hcℜ 

/ 
l( + 1)n′′ 3 1 2

rCase (2) sp =  
mhcℜ 

Case (1) shows that rsp is small (inside the core) when n″ is small and m is large. High-n wavepackets are 

launched from inside the core.

let n″ = 1, l = 0, rsp = 1a0 (1a0 = 0.529Å). 

Case (2) implies that rsp can be very large. The rsp lies near the outer turning point of the lower state. 

n″ = 4, l = 3, m = 1 (5g ← 4f)


r  = 16a0
sp

You should verify that there is no stationary phase point for n = 5, l = 2 ← n = 4, l = 3! All upward (i.e. 

∆n > 0) Rydberg-Rydberg transitions have a strong ∆l = +1 propensity rule. 

By adjusting n″ and n′ (via choice of initial state and center transition frequency), one can build a Rydberg 

wavepacket that looks like the inner or outer lobe of the initial n″,l″ eigenstate. Simple physical pictures are 

based on this! 
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Heller’s Fractionation Index


This provides a simple measure of how strongly a single bright state gets diluted into a bath of dark states.


Three cases:


1) You have an Heff and can look at all of the eigenvectors.


ψ B 
0( ) ( )0 1 ≤ ≤Suppose is bright and i N} are dark. The eigenvectors are{ ψ Di 

2 1 2/N 
j0( )  ( )ψ j = ∑ ci

j + 

1− ∑ ψ B 

0ciψ Di  
44ii =1 1 2443

β j 

The relative intensities of transitions into the N + 1 mixed eigenstates ψj〉 are given by β 2.j

Heller’s fractionation index, for the Bright state, B, is 

N +1

fB = ∑ β4 

j .

j =1


If all eigenstates have equal shares of the Bright state character (strong-mixing limit) 

β  = (N + 1)–1/2 
j

−1 2  ]4 

terms in
sum 

fB = [(N + 1) / (N + 1) = (N + 1)−1


which implies that the single Bright state is delocalized into N + 1 states, N of which are dark. 

Alternatively, you can ask how fractionated a single eigenstate is with respect to the zero-order basis 
in which it is expressed. 

 N j 4  
cif j = ∑ ( )


 + β4 

j
i =1 
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This fractionation index depends on the choice of basis set, just as the Bright state fractionation 
index is determined by the specific basis set to which the Bright state belongs. 

2.	 An eigenstate-resolved spectrum.

Heller’s fractionation index is, where Ii is the relative intensity of the i-th line, 

N 

∑ Ii 
2 

f = i= 1 
2 . 

N 
 


∑ Ii 
i= 1 

As for the eigenvector fractionation, if each line has equal intensity, Ii = 1/N, and 

N 

∑ N − 2 
( − 2 )N N 	 1

f = i= 1 =	 = 
N	 ⋅ 

N − 1
 

2 ( N N − 1) 2 N 
. 


∑ 
i= 1 

So we get the same result for the maximally fractionated (small f) limit, regardless of whether we 
look at eigenvectors or eigenstate-resolved transition intensities. 
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3.	 A continuous spectrum.

For simplicity, consider I(ν) as a single rectangular feature, 

I Imax 
← ∆ν 

0 

→ 

ν 

2∫ I dν 2 ∆ν 1
f = 2 = 

Imax = 
(∫ Idν) (Imax ∆ν)2 ∆ν 

. 

The stronger the mixing of the Bright state with the continuum bath, the broader is the spectrum. 

This can be converted to an eigenstate dilution factor merely by assuming that the density of states, 
ρ(ν), is independent of frequency. 

#  states N
ρ =	 = .

δν ∆ν 

“state”width of one 

Thus, in the limit of maximum fractionation within ∆ν, 

1
f = = ρ N 

calculated 
∆ν 

ρtrue = Nf 

observed 

= N ∆ν
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The fractionation index tells us what fraction of symmetry and energetically accessible state or phase 
space is accessed by our pluck. 

1 
Fraction of space accessed = Nf 

when f = 1/N, the fraction accessed = 1 (all of it!)

when f = 1, the fraction accessed = 1/N.



