
MIT Department of Chemistry 
5.74, Spring 2004: Introductory Quantum Mechanics II�
Instructor: Prof. Andrei Tokmakoff p. 81 

Time-Correlation Function Description of Absorption Lineshape 

Let’s express the absorption of radiation by dipoles as a dipole correlation function.   

Start with the rate of absorption and stimulated emission between an initial state 

k  induced by monochromatic field: 

A  and final state 
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The rate of energy absorption is proportional to the absorption rate 

and the transition energy:  −E� rad = w ⋅ =ω . But more generally we En
n 

nn nm 

need to consider the difference between the rates of absorption 

and stimulated emission, so the rates of transitions between 

these two states is 
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Here we have to sum over the rates of absorption from n → m  and the rates of stimulated 


emission from 
 nm → . 
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Note:  δ(ω nm +ω)= δ(−ωmn +ω )= δ (ωmn −ω ) since δ ( x) = δ (−x) 

Also: the matrix elements squared are the same. 

ωmn = −ωnm 

2 2� ˆ−Erad =
π E0 ω ( pn − pm ) m ∈⋅µ n δ ω  ( mn −ω)mn 2= 

At equilibrium p = exp[ −β E ] / ZA A 

p − p = p (1 − exp  [−β ωmn  ])= n m n 

Now, the energy incident on the sample per unit time is 

� =Ein 8 
c 
π
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�
( )  EradSo we can write the absorption coefficient, α ω  = �Ein 

2 2
( ) = 

4π −β ω= ˆα ω ω (1−e ) pn m ∈⋅µ n δ ω  ( mn  −ω)
=c 

Now this is written for two discrete states, but in general we will want to sum over all possible 

initial and final states.  We can now separate α into a product of factors that represent the field, 

and the matter, where the matter is described by σ (ω) —the absorption lineshape. 
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Now, since the delta function can be expressed as 

( ) = 
1 +∞ i tdt e ωδ ω  ∫−∞2π 
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+∞ 
dt e−i(ω −ω)t pmn ˆ ˆn ∈⋅µ m m ∈⋅µ n( ) = 
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Since m  and n  are states of system without radiation 

m eiωmt = m eiHt / = = m tU † ( )  

ωne−i t  = e−iHt / = n n t= U ( )  n U † µU = µ t( )  
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sum over 
m: unity

sum over n:  equilibrium ensemble average 

( ) = 
1 +∞ − ω ˆ 0 ˆ tdt e i t  ∈⋅µ ( )∈⋅µ ( )σ ω  ∫−∞2π 

If we average over an isotropic system:   

( ) = 
1 1  +∞ − ω 0 tσ ω  ⋅ ⋅ ∫−∞ 

dt e i t  µ ( ) µ ( )
2π 3 

The absorption lineshape is the Fourier transform of the dipole correlation function.   

The correlation function describes the time-dependent behavior or spontaneous fluctuations in the 

dipole moment in absence of E  field and contains information on states of system and broadening 

due to relaxation. 
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Different spectroscopies are described by different forms of the dipole operator. 

Rotational spectroscopy 

The dipole operator is the permanent dipole moment: µ = µ = µ û0 0 

( ) = 
1 +∞ − ω 2 ˆ ˆ 0 ˆ ˆ  (dt e i t µ ∈⋅u ( )∈⋅u t )σ ω  

2π ∫−∞ 0 

The lineshape is the Fourier transform of the rotational motion of the permanent dipole vector in 

the laboratory frame.  The frequency of the resonance would depend on the rate of rotation – the 

angular momentum and the moment of inertia. Collisions or other damping would lead to the 

broadening of the lines. Quantum mechanically we expect a distribution of resonances for 

different populated rotational states which we would sum over when performing the equilibrium 

ensemble average. 

IR Vibrational Spectroscopy 

We take the dipole operator to be weakly dependent on the displacement of nuclear coordinates 

∂µµ µ += q +" 0 ∂q 0 

Here the first expansion term is the permanent dipole moment and the second term is the transition 

dipole moment. If we are performing our ensemble average over vibrational states, the lineshape 

now becomes the Fourier transform of a correlation function in the vibrational coordinate 
2

∂µ +∞ − ω 0 (σ ω  dt e i t q ( ) q t )( ) = 
1 

∫−∞2π ∂q 

The vector nature of the transition dipole has been dropped here.  So the time dependent dynamics 

of the vibrational coordinate dictate the IR lineshape. 
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Raman Spectroscopy 

We can replace the dipole operator with an induced dipole moment, the polarizability tensor to get 

the correlation function for Raman spectroscopy. 

µ ⇒ µ = αind
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or
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1 +∞

dt e −i t 
 0 tω α ( )α ( )σ ω  ∫−∞2π 

where we have written the polarization components of the incident (i) and scattered (s) light.  The 

polarizability tensor is a second rank tensor that tells you how well a light field polarized along i 

can induce a dipole moment (light-field-induced charge displacement) in the s direction. For 

cylindrically symmetric systems this usually takes the form 

α&	   2 

 1 
α = 

 α⊥  = αI + 
3 

β


 −1 


 α⊥ 

 
 −1

 

where α is the isotropic polarizability and β is the anisotropic polarizability. The polarizability 

tensor can also be expanded in the nuclear coordinates 

∂α 
=α α0 + q +" 

∂q 0 

where the leading term would refer to Raleigh scattering and the second term would give 

vibrational Raman scattering. 
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ENSEMBLE AVERAGING and LINE BROADENING 

An absorption lineshape can represent the dynamics of the dipole or energy relaxation (i.e., 
coupling to continuum).  It can also reflect ensemble averaging effects.   

Homogeneous broadening: dynamic 
Inhomogeneous broadening:  static 

1 1 1T2 T
Homogeneous broadening ( ) : 1 

= 
T1 

+
T2

* + τ2 or 

 Population Relaxation ( ): Amplitude decay due to finite lifetime. T1

This can have contributions from radiative decay or non-radiative processes (i.e., coupling 
1 1 1to continuum) (IVR) = +

T1 τ rad τ NR


In this case, ensemble averaging doesn’t change the measurement. All members of 
ensemble identical – measured decay is the microscopic lifetime. 

q1 

Pure Dephasing ( ) : Randomization of T2
* 

phase by molecular interactions → ensemble 
averaging effect.   q2 

q3 

〈q〉 
* 
2t Te− 

Also, orientational dephasing—(τ )or 
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 Inhomogeneous Broadening ( )∆ :   
 
 Line broadening arising from a static distribution of frequencies.   
 No dynamics:  ensemble averaging effect.   
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 The total broadening reflects the contribution of all of these effects:   
 

 ( ) ( ) ( )
1 1 1

2 2* 2 12 20 T orT
t g ttt ee eτ

µ µ
 − + +  −− ∆  ≡∼  g(t): lineshape function 

 
 
 The lineshape for the broadening of a given transition can be written as the Fourier 

transform over the oscillating transition frequency damped and modulated by the 

lineshape function: 
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