
MIT Department of Chemistry 
5.74, Spring 2004: Introductory Quantum Mechanics II 
Instructor: Prof. Robert Field 

12 – 15.74 RWF Lecture #12

Quasi-degenerate Perturbation Theory. 
Strong and Weak Coupling Limits 

Reading: Chapter 9.3, The Spectra and Dynamics of Diatomic Molecules, H. Lefebvre-Brion and R. 
Field, 2nd Ed., Academic Press, 2004. 

Last time: Non-degenerate perturbation theory for interaction between quasi-eigenstates with finite 
level-width 

If we allow H(0) to have complex energies along the diagonal, we have a basis for calculating how 
quasi-eigenstates share the property of decay rate. 

Illustration that sharing of decay rate (NOT LIFETIME) is just like sharing of Zeeman tuning rate 

( )  + (  )  * key is to use perturbation theory to obtain ψ = ψ i 
0 ψ i 

1 .i 

* energy denominator is complex - rationalize and get corrections to ε and Γ 

Problem of orthogonality — solved by biorthogonal basis set.


Today:

1. biorthogonality → completeness 

2. 2 × 2 complex H 
3.	 limiting cases


 strong & weak coupling limits

4. doorway state “dissolves in bath” 
5. quantum beats . 

Biorthogonality 

When H is real everywhere except along the main diagonal 

H i = Ei i 

then it must be true that 

* * ĩ  ĩH = Ei 

but then we have 

i iĩ = ( a1… aN ) 

i  a1
 i = M  ai

N  

 a1 
i*  

 ĩ  = M  ai
N 
*  
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and therefore 

i 2˜ = ∑ ( )a which is not necessarily 1 and can even be complex.i i  j

j


–tΓ/h!Note that Ψ(Q,t) cannot remain normalized to 1 at all t because P(t) = e 

So we are stuck with two awkwardnesses about normalization: 

* cannot insist on normalization to 1 at all t 
* usual normalization integral can give a complex number 

We handle this by expressing the ortho-normalization condition as 

j̃ i
= δijj̃ j

− Γ j h
(the factor j̃ j  in the denominator cancels the e

t 
decay of probability) 

and completeness as 

j j̃ 
.1 = ∑ 

j̃ jj 
non-zero only when j = i 

Note that 

j j̃ i 
i = ∑
 =
 i1 

j̃ jj 

ĩ j  j̃
ĩ  1= ∑ =
 ĩ  

j̃ jj 

as expected, and, for a member of a different basis set 

 j̃ K
1 K = ∑ j . j̃ jj  
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It turns out that all of the results for Ei and ψi〉 from nondegenerate perturbation theory come out as 
/−1 2˜expected. But it is important to remember that it is always necessary to include the factor of [ ]  to 

renormalize i〉. 

Consider the 2 × 2 Problem with Complex Diagonal Elements 

From last lecture: real H(0), Hermitian H. 

i i  

 EA − EB  
 EA HAB  

 
 E 0   2 

HAB = * H = 
HAB EB   0 E  + 

 H* 
AB 

EA − EB  2  

change of 
notation 

−iφE± = E ± ∆ = eHAB HAB 

EA + EBE = 
2 

/ 

∆ =  



 

EA − EB 
2

2 
1 2  

HAB2  + 


/∆ ± − EB ) 2 1 2/ 

+ 
∆ m (EA − EB ) 2 1 2  

−iφ /2 

 2∆  
iφ /2ψ± e ψA e ψB .= ±

 
(EA 

2∆  

Now go to complex diagonal elements and simplified notation 

EA = −  ε  iΓA 2A 

EB = −  ε  iΓB 2B 

ε =
εA + εB δε = (ε  – εB)/2A

2 

Γ =
ΓA + ΓB δΓ = (Γ  – ΓB)/2A

2


*
= HAB = V realHAB 
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ε − i Γ 2 0  δε − iδΓ 2 V 
H = 

 − +  iδΓ 20 ε − i Γ 2 +  V δε 

The complex energies are, E = (ε − i Γ 2) ±E± 

2Γ 2 2 1 2/2E = [δε − (δ ) − iδεδΓ + V ] 
This is the square root of a complex number. There is some extremely complicated algebra (including 
rejection of non-physical cases), but we eventually obtain 

E± = (ε ± χ) − i(Γ / 2 ± δεδΓ 2χ 
1 2  

/ 2 

( ))


4 2 2 2
/ 

χ = 2−1 2  {δε  − δΓ2 + V 2 + [(−δε  + δΓ2 / 4 − V 2 ) + δε  δΓ2 ]} 
χ > 0 

NonLecture 

for the eigenvectors, we have 

ψ± = α± ψ A + β± ψ B 

/E + δε − iδΓ / 2 1 2  

α+ = β− =  2E  
/E − δε + iδΓ / 2 1 2  

β+ = −α− =  2E  

note that, as we feared, 



5.74 RWF Lecture #12 12 – 5 

/2 +2 E 2 + δε2 + δΓ 4 2Eδε 1 2  
2 + +  =  + β+ = α+  2E 

/2 −E 2 + δε2 + δΓ 4 2Eδε 1 2  

+ 2E 
≠ 1 

* * *− + 
 * * 
− =  −β α  ) + α β  = 2i Im(α β− = α + + β β  ( +  +  + +  + +) 

≠ 0 

but, in the biorthogonal sense 

˜ 

˜ 

± ±  

±m 

means we 
do not take 
complex 
conjugate 

� 

Both “mixing fractions” are
complex, but their sum is 1.

2 β± 
2 2E 

= (α± ) + ( ) = 
2E 

= 1 

±  ± + α  β  = α α± + β β± = −β  α  ±  ± = 0m m 

so all is well. The basis is biorthonormal. 
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Now consider the limiting cases for the complicated energy expressions. 

Strong coupling limit: 

V 2 2 2 2 24 4>> + > −δε δ δε δΓ Γ/ / 

we get 

  δε2 − δΓ2 4  δεδΓ δε2 − δΓ2 4  
E± = ε ± V 

 1 + 
2V 2  

 − i 



Γ 2 ±  1− 

2V 2V 2  
 

2 / V 2 

The real part of E+ – E– differs from the δΓ = 0 familiar limit result 2[V + δε2 ]1 2  
≈ 2V + 

δε2 

or 2δε + 
V δε 

−δ Γ2 

by a small “level attraction” term (as we saw in non-degenerate p. t. last time) 
4 

. 
V 

The imaginary part shows that the difference in widths is 

 δε δε2 − δΓ2 4 
δΓ 1−


V 2V 2  
original 

difference in

reduced if |δε| > |δΓ/2|
widths 

increased if |δε| < |δΓ/2| 

But the important point is that if either δε or δΓ = 0, the two quasi-eigenstates have the same width. 

We knew that δΓ = 0 would have this effect from non-degenerate p. t. The δε = 0 result is not a surprise 

because, in the ordinary 2-level problem, when δε = 0, get 50/50 mixing. There is no difference in any 

property (including the width) except for the energy (E+ – E– = 2V). 
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Weak coupling limit: V 2 2 24<< −δΓ / δε  

    
 2  V 2 δΓ  V 2 

E± = ε δε

1 + 

4 
 − i 


Γ 2 ± 


1− 

4
 


±  

δε2 + δ 
2 

Γ2 2 δε2 + δΓ2   
δε2 V 2 

The real part of E+ – E– differs surprisingly from 2V + or 2δε + . When δε = 0, the real part of
V δε 

E+ – E– is zero! Level repulsion has turned off! Big surprise! 

The imaginary part of E+ – E– shows that the difference in level widths is reduced by the E1↔E2 interaction 

EXCEPT, when δΓ2/4 >> V2, a narrow level tunes through resonance with a broad level without any 

significant change in width. BIG SURPRISE! 

No level repulsion and no width sharing in the weak coupling limit!


The broad level is a doorway state broadened by its interaction with the dark continuum.


When the doorway state becomes broader than the sharp~broad matrix element, the interaction effectively

turns off. The doorway state has “dissolved” in the bath.
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Quantum Beats: a pair of decaying quasi-eigenstates. 

ψ+ 

ψ-

ψB 

ψA 

b

bright 

road 
dark 

narrow 

I t  I e  t( ) = + 
− +Γ I e  t+ − 

− −Γh I e t+ − Γh 
QB 

QB t +( )h 
QB QBcos ω φ 

solve for I+, Γ+, I–, Γ–, IQB, ΓQB, ωQB, φQB 

Ψ 0( ) = ψA = +ψ +ψ̃ 1ψ + −ψ −ψ̃ 1ψ 

α+ α– 

Ψ( ) = + +  
− +α ψ  εi tt e Γ− + teh 2 + − −  

− −α  ψ  εi teh Γ− − teh 2h 

Intensity of fluorescence 

I t  P  t  A( ) = ( ) = tA A( )  ( )Ψ̃ Ψ0 
2 



� 
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* * 
+ α−e−iE t h2 −iE t h 2 − + α* 

− 
2e+iE t h*2 +iE t h − )( ) = P  tI t  A ( ) = (α+e + )(α+ e + 

take complex conjugate of everything 

* 4 −Γ− t h *2 −i E+ −E− )t h + α α*2e −i E− −E * )tt h2 ( 2 ( +4 −Γ+ t h= e + e + α αα+ α− + − e − +  

t t t 

t t t 

I e  I e  e  t  t  

I e  I e  e  I  tQB 

h h h 

h h h 

= + + ( ) − ( )[ ] 
= + + +( )[ ] 

+ 
− 

− 
− − 

+ −  + −  

+ 
− 

− 
− − 

+ − 

+ − 

Γ Γ Γ 

Γ Γ Γ 

QB 
QB QB 

QB QB QB 

2 22 2 2 2Re cos Im sin 

cos 

* *α α  ω  α α  ω  

ω φ 

IQB = + −2 2 2α α* 

Expressions for α± are complicated — see HLB-RWF Eq. 9.3.19. 

2 *2 ) E + δε − iδΓ/2 
�1/2 

+ −  α+ = β = (9.3.19a)φQB = tan−1 Im(α α  
*2 ) 

− 2E2Re(α α  � 
E − δε + iδΓ/2 

�1/2+ −  

h β+ = −α− = 2E 
(9.3.19b)ωQB = (ε − ε− )+ 

1
ΓQB = (Γ+ + Γ− ) = Γ 

2 

Easy to fit I(t) to simple biexponentially decaying term (actually determining both Γ  and Γ– is sometimes+

difficult) plus a beating term decaying at Γ .


One can tune EA relative to EB using ∆BJ(J + 1) or using a magnetic field.


Once can adjust the interaction matrix element using an electric field (ψB has the wrong parity for excitation


from the ground state).


See Figure 9.10 on the next page.




5.74 RWF Lecture #12 12 – 10 

Figure courtesy of Kyle Bittinger.  Used with permission. 

Figure 9.10. Level Anticrossings between states with complex energies in the strong and weak coupling limits.  The quantum 
beat frequency, ωQB, the difference between the widths of the levels at higher and lower real energy, Γ+ - Γ-, and the intensity of 

the quantum beat, I QB, are plotted vs. the difference between the real part of the zero-order energy, δε, at constant coupling 

strength (V), for three values of the difference between the imaginary parts of the zero-order energy, dΓ: strong coupling 

(V = 5δΓ), intermediate coupling (V = δΓ), and weak coupling (V = δΓ/5). Note the use of different vertical scales for the three 

Γ+ - Γ- and IQB plots. The ωQB plots illustrate the reduction in level repulsion from the strong coupling value of minimum (ωQB) = 

2V that occurs in the weak coupling limit. That the sharp level tunes, without level repulsion, through the broad level in the weak 
coupling limit, is illustrated by the linearity of the vee-shaped ωQB curve and the discontinuity in the Γ+ - Γ- curve. The IQB curves 

illustrate that, in the weak coupling limit, the product of mixing fractions is significantly reduced at the level crossing (dynamical 
2decoupling) but the FWHM of the IQB = 2 α α 2*  mutually-mixed region is increased (figure prepared by Kyle Bittinger).+ −  


