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5.74 RWF Lecture #13 13 – 1 

Polyads, a, a†, N 

Readings: Chapter 9.4.4 - 9.4.9, The Spectra and Dynamics of Diatomic Molecules, H. Lefebvre-Brion 
and R. Field, 2nd Ed., Academic Press, 2004. 

Last time:

( )two level problem with complex E j 
0 . 

strong coupling limit V2 >> δε2 + δΓ2/4: if either δε = 0 or δΓ = 0, the two quasi-eigenstates have 

the same width. Otherwise no major surprises. 

weak coupling limit V2 << δε2 – δΓ2/4: if δε = 0 we get no level repulsion and no level-width 

sharing. Big surprise! 

Quantum beats between two decaying quasi-eigenstates. I(t) expressed in terms of 8 parameters (I+, 
— I–, Γ+, Γ–, IQB, ΓQB, ωQB, φQB) obtained from 6 dynamical parameters (δε, δΓ, Γ , V, IA, IB). 

H

Today:
begin study of vibrational dynamics, leading eventually to replacement of the quantum mechanical


eff by a classical mechanical HHHH eff. Tricks to get 〈A〉 without use of Trace(ΑΑΑΑρρρρ(t)).


Polyatomic Molecule Vibration 

3N − 6

= ψ V = ∏ φv j 

product basis set

1 2…vψ v v  3N −6 

j =1 

3N − 6

H = ∑ h j + coupling terms


j =1
1 2434 
H( )0 could also include diagonal anharmonicities 

0 /E ( ) = ∑ hω j (v j + 1 2) (traditionally ω is in cm–1 units, E = hcω (v + 1/2), and ω is not in 
j 

radians/s) 

coupling terms have the form 

∑ kijkQ Q  Q  + {quartic} + {quintic} +…i j k

i j  k 
, ,  

cubic 

most important 
Enormous number of undeterminable anharmonic force constant terms. 
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matrix element scaling and selection rules 

 hascaling = 2πcµ ω j 

a/2 

{va
j 

highest power term

/2} (and similarly for Pa
j )v j + n v jQ j


 j


selection rule n = a, a – 2, … –a 

µ  and ωj must be generalized from single oscillator (diatomic molecule) form via a Wilson 

force constant geometry 

F, G matrixj

treatment, but there is always a mass factor analogous to µ j and a frequency factor analogous to ωj. 

Polyads 

Often, there are approximate integer multiple ratios between harmonic frequencies. 

Fermi ω1 ≈ 2ω2 1 : 2 
k122 Q Q2 

2 1 2  

2 : 2 kssaa Q Qa 
2 2Darling-Dennison ωsym ≈ ωantisym (why not 1 : 1 ?) 4 s 

, k1 244 Q Q  Q23 modes 
2 1 2 4  

comma is used to separate modes that receive from 
those that donate 

large and increasing numbers of quasi-degenerate basis states all interacting increasingly strongly 

e.g. Darling-Dennison 

P = 2vsym + 2vanti 

P vHpolyad 
sym vanti 

0 0 01 × 1 
2 1 0 

2 × 2 
2 0 1 

4 2 0 

4 1 1 

4 0 2 

6 3 0 

6 2 1 
4 × 4 

3 × 3 

6 1 2 

6 0 3 
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Polyad: a small piece of state space in which dynamics is 

* fast 
* predictable 
* scalable 
* visualizable 

We need an algebra that will make all of this more transparent. 

†a, a , N 

Eventually we will find that we can use this algebra to go from Quantum Mechanical Heff to Classical 
Mechanical HHHH eff. 

Dimensionless Operators 

/
ˆ 2π µω 1 2  

Q
c

Q = 
 h  ω[in cm-1] =


/


/ 

π 
µ[ ]1 

2 
1 2  

c 
k 

generalize 

−1 2ˆ cP = [h2π ω] P


ˆ ( )   1  ( ) = 
1 [
H 0 =  H 0

22πhcω 
ˆ ˆQ P+ ]2 2 

displays the equivalence of Q̂ 2 and P̂ 2 . 

Q , P , and H 0matrix elements of ˆ ˆ ˆ ( ) are simple functions of integers. 
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But it is more useful to express Q̂  and P̂  in terms of something even more fundamental: a, a†, N 

† = 2−1 2 ˆ ˆa / [Q − iP] 
ˆ ˆa = 2−1 2/ [Q + iP] 
†ˆ / [a + a]Q = 2−1 2 


ˆ / †
P = 2−1 2  i[a − a]

†
N a  a  = 

1 2/v +1a† v = [v +1]


1 1 2 
/v v + = [v +1]a 

†v vN
 = v a  a  v = v 

H( )  3N −6
† 
j j / † 

j j j
†0 = ∑ h2πcω j (a  a  +1  2  ) OR  (a  a  + a  a  j )


j=1


H(1) = anharmonic coupling terms, e. g. 

m + † 
… … jQ  Q  j = ki ij  

/ n m  n † m 
ki ij  i

n 
… … j

(2−1 2) [ai + ai ] [a j + a j ] 
Commutation rules 

† ,[a a  ] = 1i  i  

† , ,[a a  j ] = [a a  j ] = 0i i 
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Setting up an Heff — We have two choices: 

1st choice


0 †
H( ) = ∑ h2πcω j (a  a  +1  2  )j j / 
j 

† 21 QH( ) = V ( ) − ∑ (k j 2) 1 (a + a j )
j	 2 j 

already included in H(0) 

Possibly use hybrid perturbation theory and DVR methods 
to evaluate matrix elements of V(Q). 

2nd choice 

0	 †H( ) = ∑ h2πcω j (a  a  +1  2  )j j /

j


†+ ∑ x jk (a a  +1 2)(a a  +1 2)j j / † 
k k / 

≤j k  

†	 †+	 ∑ y jkl (a a  +1 2)(a a  +1 2)(a a  +1 2)j j / † 
k k / 

l l / 
j k, ,l 

[terms from a Dunham expansion converted to a†,a form] 

H(1) = specific anharmonic resonance terms that require diagonalization of a polyad block 

1 2 2 1 † 2 † 2 
e.g. Q  Q  a = kssaa (a s + a s ) (a + aa )kssaa s4 16 a


The second choice is vastly preferable because:


1.	 it is in the form of a traditional fit model; 
2.	 it does not require diagonalization of the full H because H(1) is block diagonalized 

into polyads (actually need to perform a Van Vleck transformation to fold out-of-
polyad matrix elements of the selected anharmonic resonances into the quasi-
degenerate polyad blocks); 

3.	 it does not require extensive use of non-degeneragte perturbation theory to convert 
anharmonic terms in V(Q) (k′s) into anharmonic terms in E(V) (x′s) [x-k relationships: 

Ian Mills]. 
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matrix elements of 

1	 1 2  
/ h  h	 † 2 † 

k1 22  (a + a1)(a + a2 ), 1 2	 22 
k1 22  Q  Q  2 = 

1
2−3  2  


 
2π µ ω  

/ 

2π µ ω2  c 1 1   c 2 2  
, 1 

† 2hc = k′ v v a  a  2 v1 −1,v + 2Hv v, ;v1 −1,v2 +2  1  22  , 1  2  211 2  

1 2  1 2  
/ h  h / 1


1 22  2  k1 22 
, k′ = 
1

2−3 2  


2π µ ω  

/ 

2π µ ω  hc  c  1 1   c 2 2  
, 

1 2/† 2v v  a a2 v1 −1,v + 2 = [(v2 + 2)(v2 +1)(v1)]1 2  21 

†2hc = k′ v v a  a  v1 +1,v − 2Hv v, ;v1 +1,v2 −2  1  22  , 1  2  21 21 2  

1 2  = k′	 / 
1 22  [(v1 +1)(v2 )(v2 −1)] . , 

Suppose we have a polyad involving three vibrational normal modes connected by two anharmonic 
resonances (we are going to use this model for several lectures). 

ω1 ≈ ω3 ≈ 2ω2 

ω1 is symmetric stretch: totally symmetric 

ω3 is antisymmetric stretch: anti-symmetric (need even number of quanta to be totally symmetric) 

ω2 is bend:	 totally symmetric 
(a further level of complexity could be a doubly degenerate bending 
mode) 

Resonance #1 

† 21 2	 † 2 
k1133Q Q2 = k′ , (a + a1 ) (a + a 3 )4 1 3 11 33 1 3 

Resonance #2 

1 
Q Q2 = k′ , (a + a1 )(a + a 2 )k122 1 2 1 22 1  

† 
2 

† 2 

2 

1 1  h  h  1
k′ 11 33 = k1133   , 4 4 2π µ ω  2π µ3ω3 

 hc  c c 1 1  

h  h 1

, 

1
2 / 


 1 2  





k1 22 = 
2 

k122 
−3 2  



 2π µ ω 	

/ 

 2π µ ω  hc  c  1 1  c 2 2  

Polyad number is P = 2v1 + 2v3 + v2. There are connected manifolds of resonances. 
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(0 2  0  )
, , 
n 

, ,M (0 2n − 4 2  )

M M (0 2n − 8 4  )
, ,


M M M


M M M


(n − 2 4 0  ) (n − 4 4 2  ) (n − 6 4 4  ), , , ,  , ,  

(n − 1 2 0  ) (n − 3 2 2  ) (n − 5 2 4  ), , , ,  , , 


(n, ,  , ,  , , 0 0 
0 0) (n − 2 0 2) (n − 4 0 4  ) L (0, ,n) 
Number of states in polyad: 

N #  states


0  1 (0,0,0 )

, ,
1 1 (0 1 0)

, , , ,
2 2 (1 0 0  ),(0 2 0)

, , )( , ,
3 2 (11 0  0 3 0  )

,  , ,  ,  , , ,  , , ,  , 
) (
4 4 (2 0 0  1 2 0  ) (0 4 0  ) (0 0 2)


L L 

12 16 

L L 

24 49 
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The polyad conserving resonance operators are 

11 33 a a3 ∆ = −2, ∆v3 = +2ΩΩ1 = k′ , 1
2 †2 v1 

†2 †2ΩΩ11
† = k′ , 1 v111 33 a a3 ∆ = +2, ∆v3 = −2 

ΩΩ2 = k′ , 
†2 

1 22 a a  ∆ = −1, ∆v2 = +21 2  v1 

† 2ΩΩ22
† = k′ , 1 v11 22  a a2 ∆ = +1, ∆v2 = −2 

You know how to set up the matrices for each polyad 

H hc = {ω1(N +1 2) + ω (N +1 2) + ω (N +1 2)1 / 2 2 / 3 3 /


/ 2 / 2
+x11(N +1 2) + x22 (N2 +1 2) + x33 (N3 +1 2)/ 2 
1 

2 / 3 /+x12 (N +1 2)(N +1 2) + x13 (N +1 2)(N +1 2) + x (N +1 // 2)(N3 +1 2)}1 / 1 / 23 2 / 

† †+[ΩΩ + ΩΩ11 + ΩΩ22 + ΩΩ22 ]11

{ } diagonal 

[ ] non − diagonal 

We are now equipped to look at dynamics in state space (intrapolyad dynamics), dynamics in Q,P space 
(interpolyad dynamics), and dynamics of the resonance and transfer rate operators. Next time. Also final 
exam. 


