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Dynamics in State Space and in Q, P Space

Readings: Chapter 9.4.7,9.4.8, and 9.4.11, The Spectra and Dynamics of Diatomic Molecules, H.
Lefebvre-Brion and R. Field, 2™ Ed., Academic Press, 2004.

Last time:

Polyatomic Molecule Vibrations
Polyads — example: ®, =2m, = m,
with two anharmonic resonances

interconnected manifold of resonances
rapid increase in number of near-degenerate zero-order states

Today

causal dynamics based on Heisenberg equation of motion rather than (A), = Trace(Ap(?))

We are able to compute the time evolution of any observable quantity using (A), = Trace(Ap(¢)). Need to
know p(?).

But this merely tells us what happens, not why it happens. NO CAUSALITY.

One of the most interesting classes of information will be the early time behavior of precisely specifiable
2

d
pluck of the system. So we are interested in %(A) and P (A)atr=0.
t

Intrapolyad Dynamics

1. <aj-a j> number operator N;
, :
2. (Q)) or (P;) coordinate and momentum operators

<91 +Q1T>, <91—Q1T>, <92 "‘sz <92—92T> [recall € = k{1’33afa§2, Q= kf,zzalanrz]’

resonance and transfer rate operators.

hac

5. Find a new set of a, a’, N for local rather than normal modes. a, =27 (a, + a,), a, =2"?

Y (a, —a,)

g <4. Fractional importance of resonance 1 vs. 2 for various plucks.
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We start with the Heisenberg Equation of Motion

d
" —(A) = . <[A H]) + =

If we want to know about (the number of quanta in mode j), we need to compute a' a ],H]

Useful simplifications:
number operators, N, commute with other number operators
all operators commute with constants

a number operator for oscillator j commutes with resonance operators that do not involve oscillator j.

So, for the % of N;, N,, and N; we need to work out

[ 3a3,£21]
[3333’9;(]
[3232 92]
[ a7y, QZT]

Since all of the resonance operators operate within a polyad, the polyad quantum number is conserved

P= 2afa1 +a§az + 2a§a3

d d?
E<P>t = 0 (also F<P>t = 0]

Therefore the expectation value of the more difficult of the number operators (a}La 1) can be obtained form
the two easy ones.

<a1(a1>t:% P—<a§a2> 2< 3a3> ]

a number, not an operator. Conserved.
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Work out a few examples

$ IR , 2 +2
[a3a3a91]—[3333’]‘11,333133 ]

o of 21 _ ~ps 242
= k11,33a1[a3a3,a3 ]—2k11,333133

¥ , 2 2 , 2.2
[a§a3,§21 ]:k11,333; [3233’33]:—%11,333; as

thus

[a§a3,ﬂl + Qf] = 2£Q1 - QF)

The exclusive cause
of the dynamics of
N,

Similarly,

+ _ t , T2

[3232,92]— [azaz’kmzalaz ]
1 t 21 _ , T2
= k1,2231[3232’32 ] =2kj paja,

, 2
[agaz,Q;] = _Zkl,zzaiaz

thus

[agaz,ﬂz + Q;] = 2(92 - Qg)

The exclusive cause
of the dynamics of
N,

d

E<N2>

%<N3>

2/a _of
TR,

2
_Q_T
T
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Now, suppose we start in the l0, P, 0) basis state, a pure-bender pluck.

0PO

ki ajai20P0)=0

&
N||
Ny

<
)

<£22T >t =0, thus %<N2> =0 at r= 0 for this choice of pluck.
)

=P+ 0(;2) because we have just shown that the first
derivative is zero at r =0

Not very interesting. The extreme pure bender pluck gives no motion in N, (or N, or Ny) at 7= 0. All

d
E<Ni> =0. Itis likely that the second derivative is not zero. We may return to this later or on the

final exam.

Choose a less extreme pluck.

[y (0)) = al0PO) + Bl1P - 20)

a = lale

]1/2 .

b= ple®r = [1 _lal| e (normalized)

(¢, and ¢, are time dependent! Why must this be true?)
(Np), = (PON,¥©0)) =la* P +1b*(P-2)
= P-2+2ld’

If lal = 27" {N,), = P — 1 as expected (average of P and P —2)
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we need

d
N —
ow to get 7 <N2> L

Jal

(w0, - Q) = K .| a"b{0POfa a}[1P - 20) - ab* (1P - 20a{a30P0)

= K 5 2iIm(a*B)[P(P - 1)]"*

1/2
= K 5o[P(P=D]"lal1- 1] " 2isin(6, - 0,.)
Thus

d 2
E<N2>t:o = l_h<92 _Q;(>o

’

_ %ﬂ[p(p D"l -1d?)" sin(o, - 0,)

note that if ¢, = ¢,, (N,), is at an extremum at ¢ = 0. (1st derivative is zero)
but if ¢, — ¢, = /2

<N2>t_ 0 1s experiencing its maximum rate of increase.

We can ask a question: what is the two-component superposition state that
exhibits the maximum rate of change in (N,) at t = 0?

Want Maximum matrix element of @, -Q}. Polyad # P =2v, + v, + 2v,.
Let: vi=0,v,=n,v,=P—-2n.
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<n(P - 2n)0‘aia%‘(rz —D(P-2n+ 2)0> —[n(P=2n+2)(P=2n+D]"*
~[n(P? —4nP+3P—6n+dn?+2)]

0=-L (403 _6n2—an?P+n(P2 13P+2))

dn

0=12n>—12n—8nP + P> +3P+2
_12+8P) £[12+8P)* - 48(P* + 3P +2))

n
24
IfP=10
1/2
92 +[922 - 48(132)] "~ 92+ 46
Nax = = =6o0r2
24 24
Mo =2 ME =10.6
Noin = 6 ME =0 (not possible)
n ME
0 0
1 9.5
2 10.6 maximum
3 9.5
4 6.9

Maximum matrix element is always nearer the middle than the extreme edges of a polyad.
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2

To get ? we need to do a much more elaborate calculation
t

d2

N = hdt<QZ QZT>_zhzh<[ -9l H]),

We need the following evaluated commutators (because the operators included are all of the operators that

appear in H which do not commute with ©, — ).
:92 —QzT’N1: = (@, +9j)
Q- QN |=-2(@, +0j)
@, -9 N}|=2(e, + Q) )N, - (@, - )
@, -0 Nj|=—4(0, + Q) N, - 4(@, - )
2, -9l NN, (@, + )N, 2Ny +4(, - )
[Qz -Q.0 + QIT: = 2]‘{1,33"{,22332(313% T 31322)
|, -9].9, + 0] | =24 [N, (4N, +2) - Ny (N, 1)

2
So we have everything we need to compute the o and ? of <Nl>t if we know W(7)) att = t,.
t 0

What about (Q;) and (P;)? This is easy! There are no non-zero intra-polyad matrix elements of

Qj:2_1/2(a +a )orP 2712 (aJ;—aJ)

The only way to get motion in Q or P is to pluck a superposition of several polyads.
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Useful Results

oy D 42
Q = k11,333133

’ 2
Q, = ki aja}
H/he = {0, (N} +1/2) + 0,(N, +1/2) + 03 (N3 +1/2)
= x; (N? N, +174) + x99 (N3 + N, +1/4) + x35(N2 +N; +1/2)

i 1 1 1 1
+X13 N1N3 +5(N1 +N3) +Z]+ le[N1N2 +5(N1 +N2) +Z]

1 1
+X23 N2N3 + E(Nz +N3> +Z]}

+(91+Q|T)+(92+92T)

_ 1 1 1 1
H/hC = {Nl((’ol + X11 + §X13 + E.xlz) +N2((!)2 + X929 + 5)612 + 5X23)
+N; (03 + X33 + S xp3 + 2 x93 ) + Nix; | + N3x,y + N3
3{W3 T X33 T 5 X3 T 5 X3 1*11 2X22 3X33
NN x5 + NiN3xy3 + NoyN3xos

Q)
+( 1+(02+(o3+x11+x22+x33+x13+x12+x23)}
2 2 2 4 4 4 4 4 4

+H +9f)+(@,+9))
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:N3’Q1 +91T:
:NI’QI +Q|T:
IN,€2 +92T_

= —2(91 _QlT)
- 2(Q -9
=-1(0, )

IN,,€ +92T_
:Ql +QF,N12]

:91 + Qf,N%]

Q, +Qf N}
Q, +0f N3]

N,.Q, -Q
N,.Q, - Q]

NTLQ, - Q)
IN3.Q, - Q)

N -9

= +2(0, -2))

=4(2 -9f)- (@ +of)
=—4(@ -9 )+ (@ +9])]

:Ql + ngT’NlN3] = 2[(91 -Qf )(Nl —N;)+ 2(91 +Qf )]

=2(@, -2 )N, - (2, +2))]
= (2 - )N, + (2 + 9]

Q, +Q NN, |= (2, - Q )N, - 2N)) +2(Q, + Q)

=@, +9f)
=2(0, +0j)

=-2(Q, + Q) N, +(2, - 9]
= 4(Q, + Q) )N, +4(Q, - Q)

:NlNz’Qz - QzT] = (92 + QzT)(le -N,)- 2(92 - QZT)
N, € - QF] = _2(Q1 + SZJT)

=2(Q, +0Qf)

14-9
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N2,Q, - Of |=-4(Q + 9 N, +4(@ - Q)
:N%’Ql - 9” = 4(91 + Qf )N3 + 4(91 — QF)

' 2 2
_91+Q1T92+Qz] 2k1133k122a (1a§ —ajaj

@, + Q] @, - Qf | = 2k{%, [N (4N, +2) = N,y (N, — 1]

’ ’ 2 2 2
[91 +Q Q- S)‘ZT] = —2k11,33k1,2233 (3133 +a,a}

NN, - Q| =2(0 + O )N, - N;)-2(Q - 9 )
outside of polyad

© +0f Q- Of | = 4k} 55[N; (N} —1)(2N3 — 1) = N3 (N5 ~ 1)(2N; +1)]

outside of polyad

14-10

E<A> = E<[A,H]>

£on-(gJonm-(3 e

With the above list of commutators, you should be able to express the first and second time derivatives of
any observable quantity, evaluated at the instant of the initial pluck. This gives the explicit cause (expressed
in terms of parameters ®,, x;;, k', and quantum numbers) for the early time evolution of any specifiable

observable.



