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QUANTUM MECHANICAL TREATMENT OF FLUCTUATIONS* 

Introduction and Preview 
Now the origin of frequency fluctuations is expected to be interactions of our molecule (or more 

appropriately our electronic transitions) with its environment.  This we can treat with our D.H.O. 

model, which is a general approach to coupling to nuclear vibrations.   

We found that 

iH t 0 µe 0 µ e−iH t tµ( )µ(0) = ∑ p n nn 
n 

i2 − ωegt  H  t  −iH t e g ee e= µeg 

We can write this in terms of the Hamiltonian that describes the electronic energy gap’s 

dependence on Q  (deviation relative to ωeg ): 

Heg = He
TOT − H TOT −=ω = He − Hg (Energy Gap Hamiltonian) g eg 

2 − iω t −iH t e eg egtCµµ ( )= eµeg 

Now if we believe there are interactions that lead to fluctuations in the energy group—variations 

in d or ω0 , then our Heg  is now time-dependent!   

tit +Cµµ ( ) = e − ωeg t exp  −i d τ Heg ( )τ 
= ∫0 

Performing the cumulant expansion:   

 −i t  exp 
= ∫0 

τ 
−i t

d τ Heg ( )   1 eg τ2 egd τ Heg ( )  = exp  = ∫0 
τ  +  −i 

 

2 

∫0 

t
d τ2 ∫0 

τ2 d τ H ( ) H (τ1 ) +…+ 
 =    

* See Mukamel, Ch. 8 and Ch. 7 
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t
tDefining δωeg( ) ≡ 

Heg( )  
= 

F t  − g t( )( ) = e

( ) = 
t
dτ2 d τ  δω (τ  δω (0)g t  1 )1 eg eg ∫0 ∫0 

τ2 

So we have an expression for how the time-dependence of the energy gap Hamiltonian leads to 

the lineshape. 

Also note: 

H0 = He + Ee + Hg + Eg 2

2 Q2
H = 

p
+ 1 

g 2m 2 mωD


= =ω + H + 2H
eg eg g 

2 2 1 2 2H = H − H = 1 mω0 (Q − d ) − 2 mω Qeg e g 2 0 

2 2 2= −  ω  0m d  Q  + 1 mω0 d ��	� 2 �	�
 � 
 
linear in Q const 

Note that this looks very much like a Hamiltonian that describes the coupling of an electronic 

system to a bath [one degree of freedom here] of H.O. with a linear coupling between the two!   

H HS + H + HSB  = B 

= e  E  + λ  e + g  Eg gHS e 

2

2
HB = 

p 
+ 1 mω0 Q

2


2m 2


2HSB (≅ H ) = mω0 d 2 Q�	�eg � 
 
coupling strength


Fluctuations in coupling to bath could lead to line broadening!  Equivalently, coupling to a bath 

of many harmonic oscillators should lead to line-broadening. 
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Time-Dependent Energy Gap Hamiltonian 

Let’s work through this more carefully. Start by defining reduced coordinates 

E 

λ 
eH

gH

TOT

TOT

= ω0 m p = p 
~ 2 

mω0 
ED 

q = q 
~ 2= 

mω0d = d 
~ 2= EA 

H = ω0 
 

p2 +
 q + d 

 
2 
 0 d Q= e 

 ~  ~ ~   Heg 
 2H g = ω0  p + q2 

= 
 ~ ~ 


H = H − Hg = 2= ω0 d  q  +  ω  d 2 λ
= eg e 0 ~ ~ ~ �	
 
λ 

Now, the absorption lineshape is described through 0 q 
µ t ( ) :( )µ 0

i2 − ω  tegt t e F ( )tCµµ ( ) = µ( )µ(0) = µeg 

F t  iH t −iH t g e( ) = e e 

If we want to rewrite this in terms of Heg , we are changing representation to a new Hamiltonian.  

Similar to the transformation to the interaction picture, we will choose a new frame of reference:  

the ground state Hg  and the dynamics of the excited state will be represented in reference to the 

ground state through Heg : 

H = Hg + H ⇔ H = H0 +Ve  eg  

−H t  −iH t −i 
∫0 

t
d τ Heg ( )ge e = e  exp  +  = 

τ  

−iH t g gwhere Heg ( )τ = eiH t H eeg 
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This equation implies:   

( )  ( )
0 

g e 
t 

ege e 
iF t  d  H− 

+ 

−  = = τ τ  ∫= 
iH t iH t exp  

The cumulant expansion to second order says:  


( ) = exp  




−i t
d τ Heg ( )  + 


−i 

2 
t 
d τ1 Ceg (τ  τ  +  … 1 )2 ,F t  

 = ∫0 
τ

 =  ∫0   

Ceg (τ τ1 ) = Heg (τ2 ) Heg (τ1 ) − Heg ( )  Heg ( )2 , τ2 τ1 

τ δH (τ1 ) ⇒  δω  eg ( )=  δ  Heg ( )  τ δω (τ1 )2 eg 2 eg 

δHegδω = eg = 

H 

Now note the way we defined Heg  means that 

eg = ω0 d 2 = λ= 
~ 

(The energy gap could also be defined relative to the energy gap at Q = 0 : Heg ′ = He − Hg − λ .) 

So we have 

2 −i Ee −Eg +λ)t / = − g t( ( )t e eCµµ ( ) = µeg 

∫0 

τ2( ) = 
t
dτ2 d τ  δω  (τ  δω  (0)g t  ∫0 1 eg 1 ) eg 

Now, evaluating Ceg( ) =t tHeg ( )Heg


( ) = ∑ p


0( )  for one harmonic oscillator 

C t  n  t  nH  ( ) H (0)eg n eg eg 
n 

2 − ω0i t  i t  = ω0 D n  +1) e + n e + ω  0 

 D = d 2 
( 

~ 

and 
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( ) = D coth  (β  ω  / 2 1− cos  ω0t ) + i sin  ω  − ω  t )g t   = 0 )( ( 0t 0  

′g ig  ′′= +  

Note we now have damped (g ′)and oscillating (g ′′)contributions to F t( ) . 

− ω  0i t  + ω0 − ω0Alternately we can write this as g t   1 i t( ) = D n (e − + e i t  −1) + (e −1) − iD  ω t .0 

At low t , coth x( )→ 1 and 


( ) = D[1 − cos  ω + i  sin  ω −  ω  0t]
g t  t  0t i0 

i t= D 1 − e − ω0 − ω  0t i  

combining with 

F t  iDω −g t )0t (( ) = e 

we have our old result: 

i t− ω0( ) = exp  D  (e −1)F t  
  

Distribution of Nuclear States 

Coupling to a distribution of states characterized by a density of states W (ω ) . As discussedD 

before, we expect 

( ) = exp  − dω0 W (ω ) g  t  ,  ω0 )F t   ∫ 0 ( 

Coupling to a continuum will induce irreversible relaxation, which will be characterized by 

damping of Ceg( ) . This is achieved by summing over a distribution of oscillatory Ceg (ω ,t  ) :t 0 

eg 
eg ( ) = ∫ dω C (ω ,t  W  (ω0 ) 

δωeg(t)δω
C t  0 eg 0 ) 

0( ) 
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Alternatively in the frequency domain:   

~ 
Ceg ( )  

+∞ i tωe C (t  dt  ω = ∫−∞ eg ) 

i tω= ∫ dω0 W (ω0 ) 
+∞ 

e C (ω0 ,t  dt  ∫−∞ eg )
����	���
 

Ceg (ω0 ) 

~ 
2Ceg (ω = ω  D (ω0 ) (n + δ  ω − ω  ) + n δ  ω + ω  0 )0 ) 1) ( 0 (0 

2C′′ (ω = ω  D δ  ω− ω  ) + δ  ω + ω  0 )eg 0 ) 0  ( 0 ( 

We define a spectral density or coupling-weighted density of states:   

′′ ω 
0 ) (( )  

Ceg ( )
ρ ω  =  = ∫ dω0 W (ω0 ) D (ω  δ  ω − ω  0 ) = W (ω) D (ω)

2πω2 

This leads to: 

~ 
+∞ ω 

g t  dω 
1 Ceg ( )

exp  (− ω  t ) +  ω  −  1i i t ( ) = ∫−∞ 2π ω2 


+∞   β  ω 
= ∫−∞ 
( ) coth  

= 
(1− cos ωt ) + (sin ω  − ω  t )dω ρ  ω  t 

  2   

∞
λ = =∫0 

dω ωρ  ω  ( )  

Now take the case 

C ′′ ( ) = 2λΛ 
ω 

eg ω
ω2 + Λ

Lorentzian distribution2 



Page 116 

kT
In the high temperature limit >> Λ  we get:

= 

( ) = 
2λkTg t
=Λ2 [exp(−Λt)+ Λt −1]


λ

− i 

Λ
[exp(−Λt)+ Λt −1] 

( ) , and we equate 


∆2 2λkT 1


So if we ignore the imaginary part of g t

= τc = 
= Λ 

we have our stochastic model: 

g t 2( ) = ∆2τc [exp(−t / τ )+ t / τ −1]c c 

So, the interaction of an electronic transition with a frequency distribution of nuclear coordinates 

(a bath) leads to line broadening and irreversible relaxation.  The effect is to damp the nuclear 

oscillations on electronic states. 

More commonly we would think of our electronic transition coupled to a particular nuclear 

coordinate Q  which may be a local mode, but the local mode feels a fluctuating environment—a 

friction.   

Classically, we would understand the fluctuations as Brownian motion, described by a 

generalized Langevin equation: 

�� ( ) + ω0Q + � tmQ t m 2 2 m∫0 

t
d τ γ (t − τ)Q (τ) = f 

random force 

( ) + F (t ) 
�m Q H.O. damping, for no memory ⇒ γ  

γ (t − τ ) = γδ(t − τ ) 
f t( )  = 0For a random force: 

For no memory:  

f t( ) f (τ) = 2mkT γ (t − τ ) 
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This oscillator has a correlation function described by 

ω ∝  2 2−ω + ω − ωγ ω 
CQQ ( )  1 

i ( )0 

Looks similar to a damped H.O.  

This coordinate correlation function is just what we need for describing lineshapes.  Note:   

eg ( ) = H ( ) H (0) = =2ω0 d  q  t  q  (0)C t  t 	 2 2 ( )eg eg ~ ~ ~ 

We can get exactly the same behavior as the classical GLE by coupling to a bath of harmonic 

oscillators (normal modes, x ). For 

N 
2 h = ∑=ωα 

 p2 + xα 	 where x ⇔ qnuc 
α=1  ~ 

α 
~  ~ ~ 

With this Hamiltonian, we can construct N  harmonic coordinates any way we like with the 

appropriate unitary transformation.  We want to transform to our local mode Q : 

 Q  
 X1  

  


U x =  X2  

~ ~  #  



 Xn−1 

Now: 
 2 

N −1 
2 h = ω0  p + Q2 

 + ∑=ωα 

 p2 + X α  + 2Q∑c  X  = nuc
  ~ ~  α=1


system


α α ~ 
α 

~  α 
bath	 system-bath 

interaction 

So, going back to our displaced H.O. problem, we can rewrite our Hamiltonian to include the 

interaction of one primary vibration with a bath, which leads to damping:   

Electronic transition Bath of H.O.sPrimary vibration 
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Brownian Oscillator Hamiltonian (Spin-Boson Hamiltonian) 

H H  + HB + H= s  SB  

e  H  TOT= e + g  H  g
TOT gHS e 

2 HB = ∑=ωα 
 p2 + xα 


α  ~ 
α 

~ 


H SB = 2 q ∑c xα c :  coupling  α α 
~ ~ ~ ~α 

eg ( ) = δH (t )δH (0) = ξ2 q  t  q  (0)C t  eg eg ( )  
~ ~ 

Here ξ = 2=ω0 d  is the measure of the coupling of our primary oscillator to the electronic 
~ 

transition. 


The correlation functions for q  are complicated to solve for, but can be done analyically:   


( )� ωC′′ ( ) = ξ 
= ωγ  ω  

2eg 2m (ω − ω  2 )2 2+ ω  γ  ω  2 ( )0 

where γ is the spectral distribution of couplings between our primary vibration and the bath 

( )  2 (γ ω  = π∑cα δ  ω− ωα ) 
~α 

For a constant γ , γ ω( )→ γ : 


eg ( ) = ξ  
= 1
′′C t  exp  (−γ  t / 2) sin  Ωt 

2m Ω 

2Ω =  ω  − γ  2 / 4 reduced frequency 0 
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This model interpolates between the coherent undamped limit and the overdamped stochastic 

limit.   

If we set γ → 0 , we recover our earlier result for Ceg(t) and g(t) for coupling to undamped 

nuclear coordinates. 

For weak damping γ << ω  

′′C teg ( ) ∝ ξ  
1 exp  (−γ  / 2) sin  ω t 

ω0
0 

For strong damping γ >> 2ω i , Ω  is imaginary and 

eg ( ) ∝ ξ Λ  exp  (−Λ  t ) Λ =
ω2 

D′′C t  
γ 

which is the stochastic model.   

Absorption lineshapes are calculated as before, by calculating the lineshape function from the 

spectral density above. 

This model allows a bath to be constructed with all possible time scales, by summing over many 

nuclear degrees of freedom, each of which may be under- or over-damped. 

�� ′′ ωCeg ( )  = ∑C′′ = ωγ  ω) . 
2 2 2 2 2i ωi 

eg ,i (ω) = ∑ξi 2m (ω − ω ) 
(
+ ω  γ  i ( )i 


