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Normal & Local Modes:

Classical, Morse, Minimal Model

Reading: Chapter 9.4.12, The Spectra and Dynamics of Diatomic Molecules, H. Lefebvre-Brion and R.
Field, 2" Ed., Academic Press, 2004.

Last time:

two level problem (A,B), (+,-)

P 0)) = |A)
P(?) in (A,B) and (+,—) representations
H = Hdiee 4 |res

E giqe (1) = (Hdiag)

Eo()= )= (0, +0f)

K

E — Ediag(t) T Eres(t)

= . Lor
Erey ;= lim —[; d(Q; +2)

res,j —

E res, j

f. = |—
/ Eres




5.74 RWF Lecture #16 16-2

Today: Preparation for exam
Correction of misconceptions from Lecture #15
Overtone Spectroscopy
Classical treatment of 2 coupled harmonic oscillations

Consider excitation of a molecule, like H,O, with two short pulses of radiation. The two pulses have
different center frequencies and the second pulse can be delayed by 7 relative to the first pulse, for

0 <t <10ps. After the two pulses have exited the sample, populations in the two-step excited eigenstates
are measured by an unspecified method. The measured quantity is p4(t) for each of the eigenstates in the
two-step excited polyad (see figure) on page 16-3.

At t =0 prepare [¥(0)) = |A)
** Only u,, and p,; (basis state to basis state) transition moments are non-zero.

The population in each of the two-step excited eigenstates, p,(7), as a function of delay between the two

pulses is
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transform from eigen-basis to zero-order basis state
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where T is the transformation that diagonalizes the (abcd) polyad.
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At ¢t =0 prepare hy(0)) = |A) with a short pulse.
After a delay, T, a second pulse excites to a higher energy polyad.



5.74 RWF Lecture #16

Want p(1) in the A,B basis set and Op in the {abcd}, { AB} basis set

There are 4 nonzero terms in the sum for p;(1)
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Recall from 15-5 (t)=1- l—cosm, T
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16-4

(actually, there is an overall scale factor on p(t) for the A,B states that depends on the strength of the 1st

laser pulse).
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P P from entire equation).

(good idea to factor out |Tfa |8p A

‘ 2

at=0  pp(0)= Ty, Bu,,

Population is divided among the (1234) eigenstate components of the (bacd) polyad according to the
fractional |a) character in each eigenstate. The intensity weighted average E is E,

2 PyEy

(E)=- - E
o

a

*populations oscillate at ®,_, which is an eigenstate spacing in the (AB) polyad

* 1f we sum over the eigenstate populations in the (abcd) polyad, we get

1- _
% py(T)= ‘SuaA‘z + (2(VC204S-(;)S;;)) [Vz(‘SMaA‘Z B ‘6“319‘2)]

because > ‘Tfa‘z =1
/

% TfaTZf :§4 Tl;rf Tfa — 1ba: 0

When |V |>> 8E, get oscillation between Y, Py = |5uaA|2 and 2|8uaA|2 - |8ubB|2.
ik

Populations in (1234) are modulated by coherences in (A,B) polyad weighted by difference in a—A and b-B
transition probabilities. These transition probabilities often have simple quantum number inter-

relationships. In this simple (A,B) case, all populations are modulated at the same frequency, ®,_, but with
different amplitudes. More complicated when there are more than 2 states in the intermediate polyad.

So we sample dynamics in (AB) polyad through T-dependent populations in (abcd) polyad. We do not
sample dynamics in (abcd) polyad.

Multi-step dynamics in frequency domain? See next example.
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Overtone Spectroscopy in Larger Molecules

4RH + other

SR-H

0

3RH + other

N

2RH + other

simple overtone spectrum:

special resonance

extra feature due to

ey

nRH (n+1)RH

(n+2)RH

Expect increasing width as you go to higher overtone. Intensity decreases by factor of 10 to 100 per

overtone. Spacings are ~®. (See K. K. Lehmann, J. Chem. Phys. 93, 6140 (1990).)

Double resonance
Based on change in anharmonicity of RH stretch
G0) = +1/2)+x(v +1/2)*

AGv+1/2)=Gr+D-GHW)=w+2x(v+1)

5 R-H (first laser) + 1 R—H (second laser)

6«5 54 4«3

< 6 5 4

(x<0)

- 12Ix] ®— 10lx] - 8lxl
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What do we see in the R-H fundamental region (actually SR-H + 1R-H)?
* extent of mixing of 5 R—H into bath. For each quantum of R-H transferred into the bath, the
density of dark states increases but the coupling matrix elements decrease (sequential vs. direct

coupling mechanism?).

* Intensity (area) of each anharmonically split out clump tells fractionation into lower # of quanta
of RH and width tells rate of transfern — n — 1.

We see where the SR-H pluck goes, and how fast. Early steps in the relaxation are typically dependent on a
doorway state lying near the bright state. If this near degeneracy does not occur, there is a bottleneck in the
energy flow.

What would you observe in an experiment with two short pulses (S®) T (1) with variable delay?

* 1in the absorption spectrum of the second pulse?
* 1in the populations produced?




