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5.74 RWF Lecture #18 18 – 1 

eff effTransformation between HLocal and HNormal 

Reading: Chapter 9.4.13, The Spectra and Dynamics of Diatomic Molecules, H. Lefebvre-Brion and R. 
Field, 2nd Ed., Academic Press, 2004. 

Last time:

2 identical coupled subsystems 

1.	 Classical mechanical treatment of two 1 : 1 coupled local Harmonic Oscillators 
Simple transformation decouples the sub-systems. 

2.	 quantum Mechanical treatment of Morse oscillator

V(r) = De (1 – exp – ar)2


E(v)/hc = ω(v + 1/2) + x(v + 1/2)2 (x is usually negative)

3Expand V(r), use 1st-order p.t. for r4 and 2nd-order for r . Get exact result for energies! 

Justifies use of harmonic oscillator basis set even when diagonal anharmonicity appears in 
E(0) + E(1) 

3.	 2 anharmonically coupled local Morse oscillators

eff
3 parameter HLocal (relationships or constraints among traditional fit parameters) 

Today: Transformation HLocal ↔ Heffeff 
Normal Why? Good description of the pluck (e.g. overtone vs. 

SEP). 

antagonism between term that lifts degeneracy in polyad vs. term that has off-diagonal intrapolyad 
matrix elements


2-level illustration

3 parameter model – some inconsistencies


eff6 parameter model Heff 
Local ↔ HNormal 
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Incompatible Terms in Heff 

Often we have a choice between two zero-order basis sets. These correspond to two limiting cases for the 
dynamics. In one case, one term causes an on-diagonal energy splitting that preserves the limiting case and 
another term causes an off-diagonal matrix element that destroys the limiting case. In the other limiting 
case, the roles of the two terms are reversed. 

Consider the following illustration for a 2 level system: 

H H 
= ° +  A + B 

 E 0   A 0   0 B 
= 

 0 E +  0 − A +  B 0 

Limit #1: Diagonalize H° + B (i.e. set A = 0) 

2− 1 2± =  / [ 1 ± 2 ] ( diagonalize by inspection - often possible in a limiting case ) 

± ( H° + B) ± 2 ) = ±± =  
1 ( 2E  B  E B  ( as required)
2 

± A ± −= 
1 ( A A) = 0 
2 

± A m + ) == 
1 ( A A  A  
2 

+ A † 

−  A − 
T is the transformationH1 ≡ T  HT  = 

+ E B

E B   that diagonalizes H° + B 

B lifts the degeneracy and preserves the #1 limit 
A controls off-diagonal matrix elements that try to destroy the #1 limit 

Choose instead to diagonalize H° + A. It is already diagonal 

+ +

H2  E A  0   0 B  E A  B  

= = 
 0 E A +  B 0  B  E A   – – 
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Here parameter A lifts the degeneracy and tries to preserve limit #2.

Parameter B controls the off-diagonal elements that try to destroy limit #2.


Parameters A and B play antagonistic roles, but their roles are reversed going from limit #1 to limit #2.


This sort of behavior is universal, even in much larger dimension problems than 2 × 2.


Local Mode ↔ Normal Mode


Hund’s Cases (antagonism between HROT, HSO, and Helect.)

Stark Effect vs. Λ -doubling


symmetry breaking

Symmetric double minimum 

barrier height 



 

Two-Coupled local Morse Oscillators


4 Physical parameters:


*Morse: a,D
e 

G kRL 

potential 
′ * 1 : 1 Coupling: rr  and 

kinetic

Fit Model: 
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3 independent fit parameters (ω′, x, HRL) derived from 4 physical parameters (a, De, Grr′, kRL). 

Polyad: P = vR + vL = v  + vas

P

Energy width of polyad:


(P/2,P/2)

2 x/2 

(P,0) (degenerate!) (0,P) 
(bottom of polyad) (top of polyad) 

4energy spacing:	 large 
x (4P − 4) small 

x ( )
2	 2 

2 / 

coupling matrix element: small 
HRL P1 2 HRL  P P

 
1 2  

hc 
/ large 

hc  
4 

+ 
2 

effHigh energy part of HLocal polyad goes toward normal mode limit faster than low energy part of polyad. 

Anharmonicity creates large level spacings (between coupled levels) near bottom of polyad that resists 
transition toward normal mode limit. 

Convert to normal mode limit: 

*	 analytic transformation of basis states 
*	 analytic transformation of H 
*	 define T†HT transformation numerically: set case preserving constant to zero and diagonalize. 

Apply to H where case preserving parameter is not zero. 

First, rewrite the a, a† operators: 

/ / † †as = 2−1 2  (a + aL )	 a† = 2−1 2  (a + aL )R	 s R 

/	 † −1 2 † †aa = 2−1 2  (a − aL )	 ( ) = 2 / (a − aL )R	 aa R 

Transform basis states: 

00 = 00Normal Local 

vs−1 2  ( ) ( )  / † † va 
v v  = [vs! !] a ava 00s a  asNormal 

† †(recall that [a a ] = 0)s , a 
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effTransform HLocal 
eff :to HNormal


†
* replace all vi by a a .i i  

a{ 
[ 

, ,a aa aL ,{
 }
 }
† † † †* replace all by s a a a, , ,a sR R L a 

v(ω 

=




]†* exploit 1a a, 


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
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HRLNotice that degeneracy is lifted by both xM and terms, and that the off-diagonal matrix elements are
hc 

controlled by xM rather than HRL! 

effThe roles of xM and HRL are (mostly) reversed between HLocal 
eff .and HNormal 

effIf we compare this to a standard fit model for HNormal 
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16hc 

we find (algebra) that: 

HRL′ +ω
 ω
 ω
 λ
′ +
=
 =
s hc 

′ −
HRLω
 ω
 ω
′ −
λ= =
a hc 

= −xM 4E hc  ° 
2=
 =
x x xMss aa 

2
=

=


x xMsa 

Kssaa xM


16hc 2


A total of only 3 independent fit parameters (ω′, λ, xM)! 


]




2 
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† †  † †But we have a small problem because we have only kept the 
Kssaa [a  a  a a  + a a a as s a a  s s a a  ]
16hc


Kssaa ˆ ˆ 
part of the 2 2  Darling-Dennison coupling term.[Q Qa ]4hc s 

The neglected terms are: 

Kssaa  †2 †2 2 2  1 †2 2  1 †2 2 
* out-of-polyad: 

16hc 
as a a + a  a  a + 2vs + (a + a a ) + 2va + (a + a s ) which woulds a 2 s2


have to be corrected for via a Van Vleck transformation


1* and a diagonal term: 
Kssaa (vs + 12)(va + 2)
4hc 
2xM 

These out-of-polyad and diagonal corrections spoil the microscopic definitions of ω′, λ, xss, xaa, x  in termssa

effof the 3 fit parametes from HLocal or the 4 parameters {a D, ,Grr  ′,kRL  }.e 

So we go to a pair of slightly more flexible and less microscopic 6 parameter models. 

But before we look at these 6 parameter models, reconsider the roles of xM and K /hc.ssaa

x

eff effHLOCAL HNORMAL 

M lifts degeneracy, lifts degeneracy,
 

couples s and a 
drives toward local mostly drives toward local 
(preserves basis) (destroys basis) 

HLR couples L and R lifts degeneracy: ω′ ± λ 
derives toward normal drives toward normal 

(destroys basis) (preserves basis) 

K
Roles are reversed 

ssaa actually comes (largely) from xM 
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6 parameter models (basis for classical mechanics treatment next lecture) 
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It is insightful to know relationships among fit parameters 
* recognize unlikely assignments 
* simplify dynamics. simplest possible description of a pluck. 
* recognize opposing forces toward or away from opposite limits 

But it is difficult to map out the local vs. normal character of the individual eigenstates in each polyad and 
the evolution toward global normal or local dynamics. 

What are we supposed to look for, especially when there is more than one coupling mechanism? 

* division between mostly-local and mostly-normal eigenstates 
* appearance of qualitatively new (and unexpected) classes of motion. 
* chaos. Fraction of phase space that is chaotic. 

* statistical measures 
level spacing distribution 
relative intensity distribution 


