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5.74, Spring 2004: Introductory Quantum Mechanics Il
Instructor: Prof. Andrei Tokmakoff

QUANTUM DYNAMICS'

The motion of a particle is described by a complex wavefunction ‘\p (Y, t)> that gives the

probability amplitude of finding a particle at point 7 at time ¢. If we know |1//(17,t0 )>, how does it

change with time? 0

|lﬂ(7-”,l‘0)>—> | W(’jat» t>1,
We will use our intuition here (largely based on correspondence to classical mechanics)

We start by assuming causality: |l//(t0 )> precedes and determines |l//(l‘)>
Also assume time is a continuous parameter:
lim |y (1) = ()
Define an operator that gives time-evolution of system.

ly ()= UGt |w, )

99

This “time-displacement operator” is similar to the “space-diplacement operator

w(r)) ="y (1))

which moves a wavefunction in space.

U does not depend on |y). It is a linear operator.

if ‘W(to»:al‘(Pl(to»Jraz‘(p(to»
lw(t)=U(t.t,)|w(t,))

=a,U(6t) oy (1)) +2,U (8t (1)

=a,(t)]g,)+a,(1)|o,)

From Merzbacher, Sakurai, Mukamel



while |a,(7) typically not equal to |a,(0),

2

n

=3

an(tO]

Properties of U(t.t)

Time continuity: U(t,7)=1

Composition property: U, Z‘O) =U (t 5l )U (t] , Z‘O) (This should suggest an exponential form).

v (&) = UtV 1) w ()
= U t)|w (@)

Note: Order matters!

= U@ U, 1) =1

= U™ (t,t,)=U(t,,t) inverse is time-reversal

Let’s write the time-evolution for an infinitesimal time-step, ot.

lim U(t,+5t,t,)=1

3t—00]

We expect that for small 8t, the difference between U(to,to) and U(tof+ ot, to) will be linear

indt. (Think of this as an expansion for small t):
U (ty+8t,t)) = U(t,,t,)—iQ25t

Q) is a time-dependent Hermetian operator. We’ll see later why the expansion must be complex.

Also, U(t,+8t,t,) is unitary. We know that U"'U = 1 and also

U (ty+0t,t,) U(t, +8t,t,) = (1+iQ'5t) (1-i05t) ~ 1

We know that U(t+38t,t,)=U(t+58t,t)U(t,t,).



p. 15

Knowing the change of U during the period o6t allows us to write a differential equation for the

time-development of U(t,, ). Equation of motion for U

dU(t,t,) lim U(t+3tt,)-U(t,t,)

dt st—0 5t
 lim [U(t+8,6)-1]U(t,t,)
S5t 0 St

The definition of our infinitesimal time step operator says that

U(t+8t,t)=U(t,t)-iQdt =1-iQdt. So we have:

U(to) _ -iQU(1t,)

ot

You can now see that the operator needed a complex argument, because otherwise probability
amplitude would not be conserved (it would rise or decay). Rather it oscillates through different

states of the system.

Here Q has units of frequency. Noting (1) quantum mechanics says £ = @ and (2) in classical

mechanics Hamiltonian generates time-evolution, we write

H

Q= Q can be a function of time!

ihg U(t,t0)= HU(t,tO) eqn. of motion for U

Multiplying from right by |1//(t0 )> gives

8
in—ly)=Hly)



We are also interested in the equation of motion for U'. Following the same approach and

recognizing that U’ (¢,z, ) acts to the left:

(w(O]=(w(t)|U" (1.1)

we get

—ih%U* (t,t,)=U"(t,t,)H

Evaluating U(t.t;): Time-Independent Hamiltonian

Direct integration of i 0UJ &t = HU suggests that U can be expressed as:

Ul(t,t,) = exp[—% H(t -1, )}

Since H is an operator, we will define this operator through the expansion:

exp{—%{(t—to)}:1+_iTH(t_t0)+(jT [H(t-t,)] )

h 2

(NOTE: H commutes at all ¢.)

You can confirm the expansion satisfies the equation of motion for U .

For the time-independent Hamiltonian, we have a set of eigenkets:

i) Xl

H[n)=E,

So we have
U(t,to):Zn:exp[—iH(t—to)/h]|n><n|
=Zn:|n>exp[—iEn (t—to)/h}<n|

So,



=Z|n> c, (t) c,(t)=c, (to)exp[—iu)n (t—to)]

Expectation values of operators are given by
(A1) =(w(0)]Alw (1)

~(w(O)|U" (1.0)AU(1.0)u (0))

For an initial state [y/(0)) = Y ¢, (0)n)

<A> _ ZC; <m|m> e+immt <m|A|n> e—iwnt <n|n>cn
n,m
= ZC;CHAmneiwnmt
n,m

= ;n:cm (t)e, (t)A,,

What is the correlation amplitude for observing the state £ at the time #?
e (6) = (k[w (1)) = (k|u(t.t,)|w(t,))
= z <k |n> <n ‘\If (t, )> g ionlth)

Evaluating the time-evolution operator: Time-Dependent Hamiltonian

If H is a function of time, then the formal integration of i 6U/ ot = HU gives

U(t,t,)= exp[%j; H(t’)dt’}

Again, we can expand the exponential in a series, and substitute into the eqn. of motion to

confirm it; however, we are treating H as a number.



i 1(=i\" ¢
U(t,1,)=1 - Lﬂ H(t' e + 5(;) LO dt"HEH ") + ...
NOTE: This assumes that the Hamiltonians at different times commute! [H(t’),H(t")] =0

This is generally not the case in optical + mag. res. spectroscopy. It is only the case for special

Hamiltonians with a high degree of symmetry, in which the eigenstates have the same symmetry
at all times. For instance the case of a degenerate system (for instance spin 'z system) with a

time-dependent coupling.

Special Case: If the Hamiltonian does commute at all times, then we can evaluate the time-

evolution operator in the exponential form or the expansion.

1

: .\ 2
U(t,tO):l_%L H(t')dt'+2—!(%lj J.t dt’| dt"H(t")H(t")+...

0 0 ty

If we also know the time-dependent eigenvalues from diagonalizing the time-dependent

Hamiltonian (i.e., a degenerate two-level system problem), then:

Ut ) =Slier| L5 (0)ar i

More generally: We assume the Hamiltonian at different times do not commute. Let’s proceed

a bit more carefuly:

0 -1
I —U =—H(t)U
ntegrate P (t, o) 7 (1)U(t o)
To give: U(t,to):l—% :Odr H(t)U(z, 4)

This is the solution; however, U(z,z, ) is a function of itself. We can solve by iteratively

substituting U into itself.
First Step:

U(t,to)zl—% : drH(r)[l—% :dr’H(r’)U(r', 0)}

s (5] Logemomernc



Next Step:

G L e v

From this expansion, you should be aware that there is a time-ordering to the interactions. For

the third term, ¢” acts before 7', which acts before 7: ¢, <7"<7'<7<¢.

Notice also that the operators act to the right.

This is known as the (positive) time-ordered exponential.

U(t,t,) exp+[ jdr }Texp[k dtH(t )}
:1+§Ejnj;dfn .l H()H(s) ()

Here the time-ordering is:
ly>17, >0, —>7,....7, >1

t, = e " T ST

Compare this with the expansion of an exponential:

1+ 3 i(%j : dTn...f dr, H(t,)H(x,,)...H(1))

n=l1 n!

Here the time-variables assume all values, and therefore all orderings for H(rl.)are calculated.

The areas are normalized by the n! factor. (There are n! time-orderings of the 7, times.)

We are also interested in the Hermetian conjugate of U(z,7, ), which has the equation of motion



0 +i
2 U (1) = U (1t ) H()

If we repeat the method above, remembering that U’ (t, to) acts to the left:
(w(®)]=(w(w)[U" (1)

then from U (t,t,)=U"(t,.t,) +%J.:O dtU"(t,7)H(t) we obtain a negative-time-ordered

exponential:

Here the H(7,)act to the left.



