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THE RELATIONSHIP BETWEEN U(t,to) AND c,(t)

For a time-dependent Hamiltonian, we can often partition

H,: time-independent; V(¢): time-dependent potential. We know the eigenkets and

eigenvalues of H:
Hyln) = E,|n)

We describe the initial state of the system (t = to) as a superposition of these eigenstates:

‘W(t0)>:;Cn 1’1>

For longer times ¢, we would like to describe the evolution of |y) in terms of an expansion in

these kets:

2O EDNAGEY

The expansion coefficients ¢, (¢) are given by

AOE <k|l//(t)> = <k|U(t, fo]‘//(to )>

Alternatively we can express the expansion coefficients in terms of the interaction picture

wavefunctions

bi(0) = (K1)

(This notation follows Cohen-Tannoudji.) Notice

¢ ()= <k‘\p(t)> = <k|U0UI|\|1(t0)>
=e " (k|U |w(t,))
=e ™ b, (t)
so that |b, (t]2 = e (tjz. Also, b,(0)=c;(0). Itis easy to calculate b (¢) and then add in the

extra oscillatory term at the end.



Now, starting with

. qy¥
Zh% =V |'//1>
we can derive an equation of motion for b,
., 0b,
in == (k[ViU i (1)) wi(to)= 2 bl m
n

inserting ;|n><n|=1 :Zn:<k‘V1|n><n|Ul‘\V1(to)>
= Zn:<k \A n> b, (1)

m% =SV, ()™ b, (1)

This equation is an exact solution. It is a set of coupled differential equations that describe how
probability amplitude moves through eigenstates due to a time-dependent potential. Except in
simple cases, these equations can’t be solved analytically, but it’s often straightforward to

integrate numerically.

Exact Solution: Resonant Driving of Two-level System

Let’s describe what happens when you drive a two-level system with an oscillating potential.
V(t)=Vcosot = Vf(t)

This is what you expect for an electromagnetic field interacting with charged particles: dipole

transitions. The electric field is

E(t)=E, cosot
For a particle with charge ¢ in a field E , the force on the particle is
F=qE

which is the gradient of the potential



sz—a—v—qE = V=—qEx
Ox

gx is just the x component of the dipole moment . So matrix elements in V look like:
(k| V(t)[)=—qE, (k|x|()cos ot

More generally,
V=—E-nu.
So,
V(t) =Vcosot=—E, -ficosot.

V,, (t)=V,, cosot =-E, -Ii,, cos wt

We will now couple our two states |k)+|#) with the oscillating field. Let’s ask if the system

starts in |£) what is the probability of finding it in |k) at time #?

The system of differential equations that describe this situation are:

1h b Zb et

_Zb V e —logt o %(e—imt +e+imt)

ifb, =4b,V,, [ € et [ 4,y [ e ] = (1) and (2)
inb, =1b, ¥/ [ +e™ |+1b,V, [e'(‘”‘k oy e“<°°fk+°°>t} = (3) and (4)
or

|: e‘i(‘*’t</,+‘*’)t +e‘i(“’kn‘°))t:|

We can drop (2) and (3). For our case, V, =0.

We also make the secular approximation (rotating wave approximation) in which the

nonresonant terms are dropped. When w;, ~ @, terms like e’ ore l(w“m)t oscillate very

rapidly and so don’t contribute much to change of c,,.



So we have:
b, =5ib, V,, el (1)
b, =5ib, V, e ) (2)
Note that the coefficients are oscillating out of phase with one another.
Now if we differentiate (1):
b, =5t b, Vi, € +i(w, —0)b, V,, ] 3)
Rewrite (1):

b( =2th e (o o)t

k¢

(4)

and substitute (4) and (2) into (3), we get linear second order equation for b, .

Vi |

b, —i(o, —)b, +|4h2

b, =0

This is just the second order differential equation for a damped harmonic oscillator:

aX+bx+cx=0

x =¢ " (Acosut+Bsin pt) p= i[4ac -b’ ]%

With a little more work, we find (remember b, (0)=0 and b, (0)=1)

p. 31



Amplitude oscillates back and forth between the two states at a frequency dictated by the

coupling.

Resonance: To get transfer of probability amplitude you need the driving field to be at the same

frequency as the energy splitting.

Note a result we will return to later: Electric fields couple states, creating coherences!

On resonance, you always drive probability amplitude entirely from one state to another.

1pF - p—
/on resonance

Pkl 0.5

0, —-0= |Vkl|

/| V|
large detuning

Efficiency of driving between ¢ and k states drops off with detuning.

Pmax

= = 2|V, |/n

Ok



