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PERTURBATION THEORY 

Given a Hamiltonian 

H t ( ) ( ) = H0 + V t

where we know the eigenkets for H0 

n n= EnH0 

we often want to calculate changes in the amplitudes of n  induced by V t( ) : 

ψ t( ) = ∑cn n( )t

where n


( ) = kψ =( ) t k U  t, t0( )ψ ( ) t0ck t

In the interaction picture, we defined 

= e+iω kr ck t( ) = k ( ) bk t ψ I 

which contains all the relevant dynamics.  The changes in amplitude can be calculated by solving 

the coupled differential equations: 

i∂ bk =
−i ∑e− ωnk t Vkn  ( ) bn ( )t t 

∂t = n 

For a complex system or a system with many states to be considered, solving these equations isn’t 


practical. 


Alternatively, we can choose to work directly with UI t, t0 ( ) as:
( ), and we can calculate bk t

bk = k U I t,t0( )ψ t0( ) 

where 

U t,  t  ) = exp  −i 
∫

t
V ( )dI ( 0 + 

 = I τ τ
 

t0  

Now we can truncate the expansion after a few terms.  This is perturbation theory, where the 

dynamics under H0  are treated exactly, but the influence of V t) on bn  is truncated.  This works(

well for small changes in amplitude of the quantum states with small coupling matrix elements 

relative to the energy splittings involved. ≈ ; V � Ek − Ebk ( t ) bk (0) n 
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Transition Probability 

Let’s take the specific case where we have a system prepared in 

probability of observing the system in 

A , and we want to know the 

k  at time t , due to V t) .(

2
Pk ( ) =t  b t  b t  k  UI ( t,  t0 ) Ak ( )  k ( ) = 

t ib t  k  τ τ exp  + − ∫ d  VI ( ) Ak ( ) = 
t0  = 

i t 
= k A dτ k τ AVI ( )− 

= ∫t0 

 −i 
2

t τ2+   ∫t0 

dτ2 ∫t0 

dτ1 k A + …VI ( ) V (τ1 )τ2 I
 =  

using 

−iω Ak t VkA tk VI t( )A = k U0
† V t( )U0 A = e ( )  

− iω A kτ ( )bk t “first order” ( ) = δkA − 
i 
∫t

t 

0 

dτ1 e 1 VkA τ1= 

t 
+∑ −i 

2 

∫t0 

dτ 2 ∫t0 

Vkm τ 2
−iω Amτ1 ( )  +…  “second order” 

τ 2 dτ1 e− iωmk τ 2 ( )e VmA τ1 =  
m 

This expression is usually truncated at the appropriate order.  Including only the first integral is 

first-order perturbation theory. 

If  is not an eigenstate, we only need to express it as a superposition of eigenstates, but ψ 0

remember to convert to ck t( ) = e−ω k t bk (t). 

Note that if the system is initially prepared in a state 

turned on and then turned off over the time interval t = −∞ to + ∞ , then the complex amplitude in 

the target state 

A , and a time-dependent perturbation is 

k  is just the Fourier transform of V(t) evaluated at the energy gap ωAk . 
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Example: First-order Perturbation Theory 

Vibrational excitation on compression of harmonic oscillator.  Let’s subject a harmonic oscillator 

to a Gaussian compression pulse, which increases the frequency of the h.o. 

H = 
p2 

2m 
+ k t( )x2 

2 

0A k′ = δ = A / 2πσ  

( )k t  = 0k ( )k t+ δ  ( )k tδ = 
( )2 

0 
2 

t t
A  exp  

2 

 −
′ −    

 σ 

 


 

k0 
2= mΩ 

0H H= + ( )V  t  = 

0 

2 2 

0 

H 

p xk 
2m 2 

+ 
���	��
 

( ) 

( )  

22 
0 
2 

V t  

t tA  x  exp  
2 2 

 −′ 
+  − 

 σ �����	����
 

0H n  = nE n 0H †a  a  = Ω
 

= +
1 
2 

 

 

nE n = Ω  +
 

= 
1 
2 

 

 

If the system is in 0  at t0 = −∞ , what is the probability of finding it in n  at t = ∞? 

n ( ) =
−i t iωn−τfor n ≠ 0: b t  
= ∫t0 

dτ Vn  0  ( ) eτ 

+∞−i 2 d eτ iω τ  −τ2 2σ2 
n 0′= A n  x  e0  ∫−∞= 

nω =  Ω  n0 

+∞ 2 

n ( ) =
−i 2 dτ ein  Ωτ−τ 2 / 2σb t  A′ n x 0 ∫−∞= 

+∞ 2 1 b2
∫−∞ 

exp (ax + bx + c dx = 
−π exp (c − 4 a )) a 
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e− 2 2  

n ( ) ==
−i 2n σ  Ω  2 / 42b t  A  n  x  0  
= 

What about matrix element? 

2 = 
+ † 2 

+ † + † †x = (a a  ) = 
= (aa a  a aa  + a  a† )mΩ mΩ 

First-order perturbation theory won’t allow transitions to n = 1, only n = 0  and n = 2 .    

Generally this wouldn’t be realistic, because you would certainly expect excitation to v=1 

would dominate over excitation to v=2.  A real system would also be anharmonic, in which case, 

the leading term in the expansion of the potential V(x), that is linear in x, would not vanish as it 

does for a harmonic oscillator, and this would lead to matrix elements that raise and lower the 

excitation by one quantum.   

However for the present case, 

= 2 x2 0 = 2 
mΩ 

So, 

2 2

b2 =
− 2i A e−2σ Ω  

mΩ 

2 22 2 A2 
−4σ Ω= = e A = δk0 2πσ  P2 b2 2m Ω2 

Significant transfer of amplitude occurs when the compression pulse is short compared to the 

vibrational period. 

1 
<< Ω  

σ 

Validity: First order doesn’t allow for feedback and bn can’t change much from its initial value. 

for P2 ≈ 0 A <<  mΩ 
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First-Order Perturbation Theory 

1

A number of important relationships in quantum mechanics that describe rate processes come from 
st order P.T.  For that, there are a couple of model problems that we want to work through: 

(1) 	 Constant Perturbation 

ψ t0( ) = A . A constant perturbation of amplitude V  is applied to t0 . What is Pk ? 

V t( ) = θ(t − t0 )VV(t) 
0 t < 0 

=  

t0 t	 V t  ≥ 0 

To first order, we have: 

bk = δkA − 
i 
∫t

t 

0 

dτ eiω kA (τ − t0 )VkA	 VkA  independent of time 
= 

= VeiωkA ( t−t0 )†k U  V  U0 A0 

t iω kA (τ −t0 )= δkA +
−i VkA ∫t0 

dτ e
= 

= δkA +
−VkA [exp(iω kA(t − t0 ))−1]
Ek − EA


using ei∅ −1 = 2iei∅

(t −t )/2 

2 sin ∅ 
2 

0 

= δkA +
−2iVkA e

iω k A 

sin(ωkA (t − t0 )/ 2)

Ek − EA


For k ≠ A  we have 

2

2 4VkA
Pk = = 2 sin2 

2
1 ωkA (t − t0 )
Ek − EA


bk 

or setting t0 = 0 and writing this as we did in lecture 1: 
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Pk = 
V 

2

2 
sin2 (∆t / =) where ∆ =

Ek − El 

∆ 2 

2 2  

or Pk = 
V t  sinc2 (∆t / 2= )2= 

Compare this with the exact result: 

V2 
2Pk = sin2 ( ∆ +  V2 t / =)2V2 + ∆  

Clearly the P.T. result works for V << ∆. (…not for degenerate systems) 

The probability of transfer from A  to k  as a function of the energy level splitting (Ek − EA ) : 

( )02 /  t  tπ − 

2 t 2 / =2Vkl

Area scales linearly 
with time. 

− π= − π= 0 2π= 4π= Ek − El4 2 
− − − −t t0 t t0 t t0 t t0 

Time-dependence: 

0 
kl/Vπ= t 

k=E

Ek-El ≥ Vkl 

Ek=El (exact solution for E l ) 

Pk(t) 

0 

lEk-E >> Vkl 
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Time dependence on resonance (∆=0):   

3x
expand sin x = x − + …

3! 

V2 ∆3 ∆t t3 
2 

= +…Pk ∆2 

 = 

− 
6=3 

 

V2


= t2

2= 

This is unrealistic, but the expression shouldn’t hold for ∆=0. 

Long time limit:  The sinc2(x) function narrows rapidly with time giving a delta function: 

sin2 (ax 2 ) πlim x= δ( )
t→∞ ax2 2 

22π VkAtlim Pk ( ) = δ (Ek − EA )(t − t0)
t→∞  = 

A probability that is linear in time suggests a transfer rate that is independent of time!  This 

suggests that the expression may be useful to long times: 

2 

k ( ) =
∂P t  πk ( )  2 VkAw t  = δ(E − EA )∂t = k 

This is one statement of Fermi’s Golden Rule, which describes relaxation rates from first order 

perturbation theory.  We will show that this will give long time exponential relaxation rates. 
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(2) Harmonic Perturbation 

Interaction of a system with an oscillating perturbation turned on at time t0 = 0.  This 

describes how a light field (monochromatic) induces transitions in a system through dipole 

interactions. 

V t( ) = V cosωt = −µE0 cosωt 

observe 
VkA (t) = VkA cosωt 

VkA eiω t + e−iωt ]V(t) 

τ 

= [2 

tt0 

To first order, we have: 

=
− 

= 

i 
∫t

t

0 
τ iω τkA= k t dτ VkA ( ) eψI ( )bk 

−iVkA ∫
t
d ei(ω +ω τ − ei(ω −ω τ kA ) kA )= 

t0 
τ 

 2= 

i(ω +ω)t −ei(ω +ω)t ei(ω −ω)t −ei(ω −ω)t0 kA kA 0 kA kA−VkA 
e 

=  + 2=  ω + ω  ω − ω   

1 

kA kA 

iθ 
2Setting t0 → 0  and using eiθ − = 2ie  sin  2 

θ 

kA kA−iVkA 

 
ei(ω −ω)t / 2 sin (ω − ω) t / 2 ei(ω  +ω)t / 2 sin (ω + ω) t / 2  

bk =  kA  + kA   
=  ω − ω  ω + ω  kA kA 

Notice that these terms are only significant when 

ω ≈ ωkA : resonance! 
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 First Term Second Term 

max at: ω = +ωkA ω = −ωkA 

Ek > EA Ek < EA 

Ek = EA + =ω Ek = EA − =ω

 Absorption k  Stimulated Emission l 

(resonant term) l (anti-resonant term) k 

For the case where only absorption contributes, Ek > EA , we have: 

2

2
 VkA 1= = 

=2 (ω − ω)2 sin  2  2 (ωkA − ω) t PkA bk 
kA 

22 µE0 kAor sin2  1 (ω − ω) t 
= (ω − ω)2  2 kA  

kA 

The maximum probability for transfer is on resonance ωkA = ω 

2 2 2 
klV t / 4= 

π2 /  t  

-2 -1 0 1 2 ω − ωkl / 2π 
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We can compare this with the exact expression: 

2

2
 2 2VkA= = 2 sin  2 


 

2
1 
= +  ω  − ω) tPkA bk VkA ( kA2 2  = (ω − ω) +kA VkA 

which points out that this is valid for couplings  that are small relative to the detuning VkA

∆ω = (ω − ω) .kA 

Limitations of this formula:  

3x
By expanding sin x = x − +…  , we see that on resonance ∆ω = ω  kA − ω →  0

3! 

2lim VkA t2P t
∆ω → 0 k ( ) = 

4=2 

This clearly will not describe long-time behavior, but the expression is not valid for ∆ω =0. 

Nontheless, it will hold for small Pk , so 

2= 
t <<  (depletion of 

VkA
1  neglected in first order P.T.) 

At the same time, we can’t observe the system on too short a time scale.  We need the field to 

make several oscillations for it to be a harmonic perturbation.   

1 1 
t > ≈

ω ωk A 
kl2 /  tπ << ω  

These relationships imply that 

VkA << =ωk A 


