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PERTURBATION THEORY

Given a Hamiltonian
H(t)=Hy+ V(1)
where we know the eigenkets for H
Hylm) = E,|n)

we often want to calculate changes in the amplitudes of |n) induced by V(1):

ly D=2 c, (N m)
¢ ()= <k|‘//(f)> = <k|U(f’lo]‘//(f0 )>

In the interaction picture, we defined

bi(1)= <k| '//1>> =e" ¢ (t)

where

which contains all the relevant dynamics. The changes in amplitude can be calculated by solving

the coupled differential equations:

0 —i —imyt
S D= YV (1)b, (1)

n

For a complex system or a system with many states to be considered, solving these equations isn’t

practical.

Alternatively, we can choose to work directly with U, ,(t,to ), and we can calculate b, (¢) as:

by = <k|U1(f>foj‘//(fo )>

where

U, (t,t,)=exp, {% f V, (r)dr}

Now we can truncate the expansion after a few terms. This is perturbation theory, where the

dynamics under H, are treated exactly, but the influence of V(¢) on b, is truncated. This works
well for small changes in amplitude of the quantum states with small coupling matrix elements

relative to the energy splittings involved. ‘bk (t)‘ ~ ‘bk (0)

V|<|E, -E,

9
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Transition Probability

Let’s take the specific case where we have a system prepared in | ¥, and we want to know the

probability of observing the system in |k) at time ¢, due to V(¢).

P, (t)=[b, (t)f b, (t)=(k|U, (t.t,)] ¢)
)

= <k|€> — %LZ dr<k‘VI (r)‘€>

+(%j2 f de, [ dr, (k[Vi () Vi ()] ¢) +...

0. (0o [ [ e, (9]

using

(H7010) = (Hud Vo) Ugle) = e v ()

bi(t) =S4 — El Lt dry ¢ "y, (7)) “first order”

N 2
—1 t T _q —1. e 99
B[ [ e [ e e)e T V() e “second order
m 0 0

This expression is usually truncated at the appropriate order. Including only the first integral is

first-order perturbation theory.

If | tyO) is not an eigenstate, we only need to express it as a superposition of eigenstates, but

remember to convert to ¢, (1) =e~“ b, (¢).

Note that if the system is initially prepared in a state |£ >, and a time-dependent perturbation is
turned on and then turned off over the time interval t = —co to+o, then the complex amplitude in

the target state |k> is just the Fourier transform of V(t) evaluated at the energy gap o,, .
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Example: First-order Perturbation Theory

Vibrational excitation on compression of harmonic oscillator. Let’s subject a harmonic oscillator

to a Gaussian compression pulse, which increases the frequency of the h.o.

VN

2 2
H = 5; + k(t)%
A'=0k,=A/~2n0
(t-t)°
k(t)=k,+8k(t) 8k (t)= A,GXI{_Z—S} k, =m0’
c
2 2 A'x> t—t 2
H=H,+V(t) = 2p—m+k0X2 + Txexp{ ( 202) ]
Hy
V(1)
. 1
H0|n>=En|n> H0=hQ[a a+§j En=hQ(n+Ej

If the system is in |0y at ty = —oo, what is the probability of finding it in |n) at = 0?
—1 ft i, T
for n # 0; b, (t)z; tOdr V,(t)e
_ __1 ' 2 oo it —12/20°
= hA<n‘x ‘O>J‘_mdre e

n

b, (1)=—1 A (o) [ dr s

_[j: exp(ax’ +bx+c)dx = ? exp(c—%%z)
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—i 2n2620?
b, (1) =" A(n[x’|0) e
What about matrix element?

x? = %(a +aT)2 :£(33+a*a+aaT + a*a*)

First-order perturbation theory won’t allow transitionsto n=1,only n=0 and n=2.

Generally this wouldn’t be realistic, because you would certainly expect excitation to v=1
would dominate over excitation to v=2. A real system would also be anharmonic, in which case,
the leading term in the expansion of the potential V(x), that is linear in X, would not vanish as it
does for a harmonic oscillator, and this would lead to matrix elements that raise and lower the

excitation by one quantum.

However for the present case,

) /]
(2fx’(0)=v2——

So,
b, = V20 ) oo
mQ
2
P, =|b,|" = 22’; et A =8k,210
m

Significant transfer of amplitude occurs when the compression pulse is short compared to the

vibrational period.

—<<Q

Validity: First order doesn’t allow for feedback and b, can’t change much from its initial value.

for P, =0 |A| << |mQ|



First-Order Perturbation Theory

A number of important relationships in quantum mechanics that describe rate processes come from

1* order P.T. For that, there are a couple of model problems that we want to work through:

(1) Constant Perturbation

|1//(t0 )> =|¢). A constant perturbation of amplitude V is applied to #,. What is B, ?

V(t)

t, t

To first order, we have:

bk = 5]{5 —7;'[; dT eia)k/(r_to)l/kgw_

=0y +_;l VMLI dr &)

-V, -

S

i, (1-,)/2

sin(a)k[(t —1y)/ 2)

S

For k # ¢ we have

vl

B, =|n [ =m sin” $ @y (1= 1)
k=0

or setting to = 0 and writing this as we did in lecture 1:

V(t)=0t—1t,))V

_0t<0
v >0

Vi, independent of time

(k|Uy VU, )= vento

using €™ — 1= 2ie'” sin%
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v -
B, = sin”(Az/ h) where A :¥

2.2

or P, :\;l—zt sinc” (At/2h)

Compare this with the exact result:

VZ
Pk :ﬁsinz( A2+V2 t/h)
V' +A

Clearly the P.T. result works for V << A. (...not for degenerate systems)

The probability of transfer from |£) to |k) as a function of the energy level splitting (Ek -E e) :

Area scales linearly
with time.

—4nh  2nh () 2nh  4nh Ek—E1
t—t, t—t, t—t, t—t,

Time-dependence:

E=E (exact solution for Ex=E)

/ Exv-Ei > Vu

/),

E«-Ei>> Vi



Time dependence on resonance (A=0):

3
. X
expand sinx =x——+ ...

31
Vi At AP ’
Po=—| 22y
A\ n en
—V_2t2
-

This is unrealistic, but the expression shouldn’t hold for A=0.

Long time limit: The sinc’(x) function narrows rapidly with time giving a delta function:

. 2
fim S (32) =78(x)

t—00 ax

2”|Vk/|2
lim B (1) = ——— 5(E; - E, Nt — 1)
f—>o /]

A probability that is linear in time suggests a transfer rate that is independent of time! This

suggests that the expression may be useful to long times:

oP (1) 2x|v,[
w, (t)= gt(): |h“| 8(E,—E,)

This is one statement of Fermi’s Golden Rule, which describes relaxation rates from first order

perturbation theory. We will show that this will give long time exponential relaxation rates.
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(2) Harmonic Perturbation

Interaction of a system with an oscillating perturbation turned on at time £, = 0. This
describes how a light field (monochromatic) induces transitions in a system through dipole

interactions.

V(t)=V cos ot =— uE, coswt

observe
Vie(t) = Vi coswt

— % [eia)t n e—ia)t:l

q

To first order, we have:

b, =(kfy (1) =2 [ de v, (1) e

—Vk( |:ei(u)k,+m)t _ei(mk,ﬂn)to ei(mkﬁ—u))t _ei(mk,—m)to :|
= - +

2h 0, +O 0, —O

Setting #, — 0 and using ¢° —1= 2ie” sin %

bk

h

-iV,, gl o2 sin[(wkz —m)t/2] gllowro)2 sin[(wk[ +03)t/2]
=—X +
O)k/ -0 wk% +o®

Notice that these terms are only significant when

@~ resonance!



First Term Second Term
max at: @ =+awyy W =—W
E,>E, Ly <Ey
E,=E,+hw E,=E,—hw
Absorption |k) Stimulated Emission 1)
(resonant term) L 1) (anti-resonant term) L I3

For the case where only absorption contributes, £, > E,, we have:

\%
Pk/—|bk|2 h2(|0)k€| o sin’[ (o, —o)t |
k¢
E(2)|H'kf|2 2
‘ Lo, —o)t
or oy —o) sin” | 4( ey, 0))]
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We can compare this with the exact expression:

2
|2: |Vk€|2 | . Sinz[;_h\/|vu|2+(cok€—m)2t}

P, =b
« | « n* (o, —o) +Vké|

which points out that this is valid for couplings |Vk[| that are small relative to the detuning

Ao =(0, -0).

Limitations of this formula:

3
By expanding sinx = x — . , we see that on resonance Aw=w,, —®—>0
3!
lim V|
Ao —0 4h

This clearly will not describe long-time behavior, but the expression is not valid for Aw=0.

Nontheless, it will hold for small £, so

2h .
t<<— (depletion of |1) neglected in first order P.T.)
4

At the same time, we can’t observe the system on too short a time scale. We need the field to

make several oscillations for it to be a harmonic perturbation.

1 1
1 >— ~x— - 2T/t <<y
W  Wp

These relationships imply that

ng << ha)kg



