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FERMI’S GOLDEN RULE 

We have calculated the probability of observing the system in a state k  after applying a 

perturbation to A . Often we are interested in transition probability not to an individual eigenstate, 

but a distribution of eigenstates. Often the set of eigenstates form a continuum of accepting states, 

for instance, vibrational relaxation or ionization.   

Transfer to a set of continuum (or bath) states forms the basis for a describing irreversible 

relaxation.  Qualitatively, you expect deterministic, oscillatory feedback between discrete quantum 

states. However, the amplitude of one discrete state coupled to a continuum will decay due to 

destructive interferences between the oscillating frequencies for each member of the continuum. 

So we are interested in calculating transition probability to a distribution of final states:  Pk . 

2Pk = Probability of observing amplitude in discrete eigenstate of H0bk 

ρ Ek( ): Density of states—units in  1
Ek  

 , describes distribution of final  
states—all eigenstates of H0 

If we start in a state A Pk, the total transition probability is a sum of probabilities = ∑ Pk . We are 
k 

just interested in the rate of leaving A  and occupying any state k . or for a continuous 

distribution: 

k 

dEk ρ EkPk = ∫ ( )Pk 
Ek − El 

l 

For a constant perturbation: 

sin2 ((Ek − EA ) t / 2=)2Pk = ∫dEk ρ(E ) 4k VkA 2Ek − EA 
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Let’s make two assumptions: 

kP

ρ( Ek ) 
1) 	ρ Ek( ) doesn’t vary much with frequency.  

There are many final states: continuous.   2 /  t  π 
Also, t is relatively long. 

Ek − El2) 	 The matrix element VkA  is invariant across 

the final states.   


These assumptions allow those variables to be factored out of integral  

2 +∞ 
dEk 4 

sin2 ( Ek − EA ) t / 2= 
Pk = ρ( Ek ) VkA 2∫−∞ ( Ek − EA ) 

We have chosen the limits −∞ → + ∞  since ρ(Ek ) is broad relative to Pk . Using 

+∞ sin2 a∆d∆ = aπ , with a t /  ==∫−∞ ∆2 

2π 2Pk =	 ρ(Ek ) tVkA = 

The total transition probability is linearly proportional to time.  Often, for instance in relaxation 

processes, we will be concerned with the transition rate, w kA : 

∂PkA =wkA ∂t

2π
 2 wkA = ρ(Ek ) VkA = 

This is Fermi’s Golden Rule.  Note rates independent of time.  It is very common for chemical rate 

processes: matrix element squared + D.O.S.   

Remember that Pk  is centered sharply at Ek = EA . So we may write ρ(Ek = EA ) or more 

commonly in terms of δ(Ek − EA ): 
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2π 2 wkA = ρ(E = EA )k VkA = 

2π 2 δ( E − EA ) wkA = ∫ dEk ρ( E ) w=w kA VkA k k kA = 

Range of validity: 

For discrete states we saw: VkA << =ωkA 

Also Pk  never varies much from initial values.   

Pk = wkA ( t − t0 ) t << 
1 

wkA 

However, transition probability must be sharp compared to ρ(Ek ). 

k lE E− 

( )kEρ 

kP 
π 

k kE∆ = =2 /  t  ∆ω  

t >> = / ∆Ek 

E∆ >>  wkA = 

∆ωk >> wkA 
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Golden Rule Rate for Harmonic Perturbations 

If we want to calculate the transition rate to a continuum of final states induced by harmonic 

perturbation, we follow derivation of F.G.R. from before.   

sin2 (ω − ω) t 2 VkA 
2 

 kA Only absorption:  P = k 4=2 
(ω − ω) / 2 

2 
kA 

Pk = ∫dEk ρ(E ) Pk k 

dω  ρ ω  k ) Pk 

π 

= ∫ k ( 

2 (=  ρ ω  k = ω + ω)( t )VkA A2=2


∂Pk π
 2 = =  ρ ω  = ω + ω)( kVkA Aw kA ∂t 2=2


π
 2 (=  ρ ω  kA = ω)VkA2=2 

or more commonly:   

π 2 =  δ ω  − ω)VkA ( kAw kA 2=2 

If we include both the absorption and stimulated emission and neglect interferences (i.e., long 

times):   

π 2 = δ ω  − ω + δ ω  + ω)VkA  ( kA ) ( kA w kA 2=2 

π 2 = δ(E − EA −  ω + δ(E − EA +  ω)VkA  k = ) k = 2= 

abs:  Ek = EA +  ω  S.E.  Ek = EA −  ω  = = 
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Let’s look at this expression for the two sets of states { }i and {j } where ε j > εi : 

STIMULATED EMISSION 
j 

π 
= ρ( )Vij Eiwij 2=2i 

j ABSORPTION 

2πi = ρ( )Vji E jw ji 2=2 

2 2
since Vij = Vji 

Eiwij =
ρ( )  detailed balance 


E j
w ji ρ( )  

The ratio of the rates upward and downward is given by the ratio of the density of states of the 

photons in the electric field. (More commonly this is seen written for matter in the form that 

relates the rates for discrete states to the thermal occupation of those states: 

w /  w ji = exp  (−β ωij ) .= ij 


