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Slowly Applied (Adiabatic) Perturbation 

All of our perturbations so far have been applied suddenly at t > t0  (step function) 

V t( ) = θ t − t0( )V t( ) 

This leads to unphysical consequences—you generally can’t turn on a perturbation fast enough to 

appear instantaneous.  Since first-order P.T. says that the transition amplitude is related to the 

Fourier Transform of the perturbation, this leads to additional Fourier components in the spectral 

dependence of the perturbation—even for a monochromatic perturbation! 

So, let’s apply a perturbation slowly . . .  
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The system is prepared in state   A  at t = −∞.  Find Pk t( ).   
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This is a Lorentzian lineshape in   ωkA  with width   2η= .  

 Gradually Applied Perturbation   Step Response Perturbation 

2 η =

klω=0   

2 / tπ =

klω=
 

The gradually turned on perturbation has a width dependent on the turn-on rate, and is independent 

of time.  (The amplitude grows exponentially in time.)  Notice, there are no nodes in Pk .   

η−1  is the effective turn-on time of the perturbation:   

Now, let’s calculate the transition rate:   

 
2 2 t

kk
kl 2 2 2

k

VP 2w
t

e η∂ η
= =

∂ η + ω
A

A=
 

Look at the adiabatic limit; η→0 .   
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We get Fermi’s Golden Rule—independent of how perturbation is introduced!   
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If we gradually apply the Harmonic Perturbation, 
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Again, we have a resonant and anti-resonant term, which are now broadened by η .   

If we only consider absorption:   
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which is the Lorentzian lineshape centered at   ωkA = ω  with width ∆ω = 2η .   

Again, we can calculate the adiabatic limit, setting η → 0 .  We will calculate the rate of transitions 

  ωkA = ∂Pk / ∂t .  But let’s restrict ourselves to long enough times that the harmonic perturbation has 

cycled a few times (this allows us to neglect cross terms) →  resonances sharpen.   
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