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Slowly Applied (Adiabatic) Perturbation

All of our perturbations so far have been applied suddenly at 7 > £, (step function)
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This leads to unphysical consequences—you generally can’t turn on a perturbation fast enough to
appear instantaneous. Since first-order P.T. says that the transition amplitude is related to the
Fourier Transform of the perturbation, this leads to additional Fourier components in the spectral

dependence of the perturbation—even for a monochromatic perturbation!

So, let’s apply a perturbation slowly . . .
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The system is prepared in state |#) at ¢ = —o. Find B(¢).
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This is a Lorentzian lineshape in @;, with width 27 .

Gradually Applied Perturbation Step Response Perturbation
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The gradually turned on perturbation has a width dependent on the turn-on rate, and is independent

of time. (The amplitude grows exponentially in time.) Notice, there are no nodes in 7.

77_1 is the effective turn-on time of the perturbation:

Now, let’s calculate the transition rate:
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Look at the adiabatic limit; 7—0.
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We get Fermi’s Golden Rule—independent of how perturbation is introduced!
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If we gradually apply the Harmonic Perturbation.
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Again, we have a resonant and anti-resonant term, which are now broadened by 7.

If we only consider absorption:
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which is the Lorentzian lineshape centered at o, = @ with width Aw = 27.

Again, we can calculate the adiabatic limit, setting 7 — 0. We will calculate the rate of transitions
@,y =0P, / Ot. But let’s restrict ourselves to long enough times that the harmonic perturbation has

cycled a few times (this allows us to neglect cross terms) — resonances sharpen.
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