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5.74, Spring 2004: Introductory Quantum Mechanics Il
Instructor: Prof. Andrei Tokmakoff

Interaction of Light with Matter

We want to derive a Hamiltonian that we can use to describe the interaction of an electromagnetic
field with charged particles: Electric Dipole Hamiltonian.

Semiclassical: matter treated quantum mechanically
Field: classical

Brief outline of electrodynamics: See nonlecture handout. Also, see Jackson, Classical
Electrodynamics, or Cohen-Tannoudji, et al., Appendix III.

> Maxwell’s Equations describe electric and magnetic fields (E ,B )

> For Hamiltonian, we require a potential.

> To construct a potential representation of £ and B, you need a vector potential A (¥,t)and a
scalar potential ¢ (F,1).

> A and @ are mathematical constructs that can be written in various representations (gauges).

We choose a gauge such that ¢ =0 (Coulomb gauge) which leads to plane-wave description of E
and B :
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This wave equation allows the vector potential to be written as a set of plane waves:

(oscillates as cos ot)

+c.c. (oscillates as sin mt)



so we see that £ L &1 7

€ is the direction of the electric field polarization and
n is the direction of the magnetic field polarization.
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We define %EO =iwA,
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E(T.t)=|E,| ésin(E-T—wt
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B(T,t)=[B,|bsin(k T -ot)
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Hamiltonian for radiation field interacting with charged particle

We will derive a Lagrangian for charged particle in field, then use it to determine classical
Hamiltonian, then replace classical operators with quantum.

Start with Lorentz force on a charged particle:

F=q(E+VxB) (1)
where T is the velocity. In one direction (x), we have:

E =q(E, +yB,- 2B,) )

The generalized force for the components of the force in the x direction in Lagrangian Mechanics
1s:

F, =—6—U+3(a—gj 3)
ox dt\ ox

U is the potential. Using our relationships for £ and B in terms of 4 and ¢ in eq. (2) and
working it into the form of eq. (3), we can show that:
U=qp-qr-A 4)
See CTDL, app. III, p. 1492. Confirm by plugging into (3).
Now we can write a Lagrangian
L=T-U
=imt’ +qr-A—-qo (5)

Now the Hamiltonian is related to the Lagrangian at:

H=p-T-L

=p-T—4mT’ —qT-A-qQ (6)

— L _ e - p— e

p:a—;=m +qA = r:é(p—qA) (7)
or

Now substituting (7) into (6), we have:
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H=%p (1) 2 o) ~£(F-1) 4+ g0
= [p-gAE.0f +apF.0)
This is the classical Hamiltonian for a particle of charge ¢ in an electromagnetic field. So, in the

Coulomb gauge (¢ =0), we have the Hamiltonian for a collection of particles in the absence of a
field:

Hy = Z(% + Vo(?i)j

i i

and in the presence of the field:
_\2
H=3( (p -0 A (D) + V()

Expanding:

H:HO—Z%(pi-K+K-E)+ > ‘rln Al

1

Generally the last term is considered small—energy of particles high relative to amplitude of
potential—so we have:

H=H, + V()
V()= Z (p, A+ A-p,)

Now we are in a position to substitute the quantum mechanical momentum for the classical:

— iV Matter: Quantum; Field (A): Classical
ih - —=
V()= ZE %Wi A+4 'Vi)
i <M

(% A )+ A-V (chain rule), but we are in the Coulomb gauge@ A= O), SO

Notice V-
V-A=A-

A=
v
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Using our plane-wave description of the vector potential:

V(t)=-L [Ao ep ei(kh7_wt)+ c.c}

Electric Dipole Approximation

If the wavelength of the field is much larger than the molecular dimension (1 — o )|il — 0), then

LA

If 7, is the center of mass of a molecule:

—e* 7 [1+ik-(i=7)+... ]

For UV, visible, infrared—not X-ray—lk”?l- - ;70|<< 1, set =0 T 1.

We do retain higher-order terms to describe higher order interactions with the field.

Retain second term for quadrupole transition moment: charge distribution interacting with
gradient of electric field and magnetic dipole.



Electric Dipole Hamiltonian

V(t)= _Zq [AO cpe 4 c.c.]

Using 4, = ;ﬂ
10
—i E A — _—i® — _Fio
V(t)= 21;110)0 [e-pe ‘—&pe t}
A% (t) = %io(é -ﬁ) sin ot Electric Dipole Hamiltonian
_q —
=——E(t)-
mw( (t)-D)

or for a collection of charge particles (molecules):

V()= Z 2 () [

~ m, ®

1

Harmonic Perturbation: Matrix Elements

For a perturbation V(¢)=V,sinat the rate of transitions induced by field is
Ty, 2
Wi = 2_h|Vk/| [6(E; ~ E, ~hw)+ 5(E; ~ E, + ho)]
Let’s look at the matrix elements for the E.D.H.

Voo =(Rll) = L2 7l )

Evaluate the bracket (klf)lﬁ) using [17, H, ]=

s

(klple) = %(’47’1‘10 ~ HyT|£)

= imaoy, { K7 |)

L
-V, =igE, —“<k
Q)

&-7]¢)
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or for a collection of particles

e ()
=iEO%<k & ¢

So we can write the electric dipole Hamiltonian as

dipole moment

V(t)=—n-E(t)

So the rate of transitions between quantum states induced by the electric field is
1) —
Wi = _|E0|2i Kk| GV)' [6(E ~ E,~ho)+ (B, ~E, +ho)]

~ | Eof Kkl 4o s ~ )o@y +o)]
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