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Non-Lecture

Review of Free Electromagnetic Field

Maxwell’s Equations (SI):
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E : electric field; B : magnetic field; J: current density; p: charge density; €:
electrical permittivity; £4,: magnetic permittivity
We are interested in describing £ and B in terms of a scalar and vector potential.
This is required for our interaction Hamiltonian.
Generally: A vector field F assigns a vector to each point in space, and:
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Some useful identities from vector calculus are:
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We now introduce a vector potential A(7,7) and a scalar potential ¢(7,), which
we will relate to E and B

Since V-B =0 and 6(%2):0:

VxE=_vxA
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From (9), we see that a scalar product exists with:
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So we see that the potentials A and ¢ determine the fields B and E :
B(F,t)= VxA(F,1)
E(Fat) = _660(7791) - % 2(7751)

We are interested in determining the wave equation for A and @ . Using (15) and
differentiating (16) and substituting into (4):
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Using (10):
| =(= - op) _ -
{ VA + ey uy — }+VKVA+EO,UO ;)):,UOJ

From (14), we have:
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and using (2):
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Notice from (15) and (16) that we only need to specify four field components
(4, 4,, 4, ¢) to determine all six E and B components. But £ and B do not
uniquely determine A and @ . So, we can construct A and @ in any number of
ways without changing £ and B . Notice that if we change A by adding v 4
where y is any function of 7 and ¢, this won’t change B (Vx (V- B)=0). It
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will change E by (—% \% ;(), but we can change ¢ to @' =@ —EZ . Then E and

B will both be unchanged. This property of changing representation (gauge)
without changing £ and B is gauge invariance. We can transform between
gauges with:

A'(F,t)= AF,0)+V - y(F.0)
gauge
transformation
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Up to this point, 4" and Q are undetermined. Let’s choose a y such that:
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then from (17):
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The RHS can be set to zero for no currents.

From (19), we have:
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Eqns. (23) and (24) are wave equations for A and @ . Within the Lorentz gauge,
we can still arbitrarily add another y (it must only satisfy 22). If we substitute
(20) and (21) into (24), we see:
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So we can make further choices/constraints on 4 and @ as long as it obeys (25).

For a field far from charges and currents, J =0 and p=0.

y—
— 0° A

—-V°A+e€ —=0
0 Ho Py

2
o2 g
-Vip+e, /JO?:O

We now choose ¢ =0 (Coulomb gauge), and from (22) we see:
V-A4=0
So, the wave equation for our vector potential is:
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The solutions to this equation are plane waves.
A= Zosin(a)t —E-?+a)
a: phase
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k is the wave vector which points along the direction of propagation and has a
magnitude:
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Since (28) V -4 =0
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Ay 1s the direction of the potential — polarization. From (15) and (16), we see

that for ¢ =0
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