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1. 	 Density Matrix Description of the Linear Response Function 

In problem set 2 you showed that the equation of motion for the density matrix in the interaction 

picture is ∂ρI = −
i [V ,I ρ I ] , where the density matrix in the interaction picture is defined as 

∂t h

ρ =U†ρ U .
I 0 S 0 

a) How do you express the expectation value of the operator A in terms of ρI ? 

b)	 The time development of ρ I  can be obtained by integrating the equation of motion. Use the 
first-order solution to the differential equation for ρ I  above to obtain a density matrix 
expression for the linear response function. 

c) Explicity evaluate the expression in (b) for the electric dipole interaction of a field with a 
two level system 

H0 = |a〉 εa 〈a| + |b〉 εb 〈b| 

in which the dipole operator couples the two states: 

μ = |a〉 μab 〈b| + |b〉 μba 〈a|. 

What is the form of ρeq? What is the matrix form of U0? Show that your result is consistent 
with the Schrödinger representation 

2
R ( )t = 

2 ∑ pn sin  ω jn  tAjn  
h n, j  
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2. Vibrational relaxation in a triatomic 

We’ll examine the process of vibrational relaxation commonly found in triatomic molecules, 
focusing specifically at the case of water. For the case of a nonlinear “ABA” molecule such as H2O, 
the normal modes of vibration are the symmetric and asymmetric O-H stretching modes, νa and νs, 
and the bending mode, δHOH, with vibrational frequencies of ωa0=3450 cm-1, ωs0=3200 cm-1 and 
ωb0=1650 cm-1, respectively. The splitting between νa and νs arises from coupling between the two 
OH local mode stretching vibrations. In the case of the nonlinear “ABC” molecule HDO (where D 
is 2H), the normal modes are well-approximated by local O-H and O-D stretching vibrations, νh and 
νd, and the bend is δHOD. The frequencies in this case are ωh0=3400 cm-1, ωd0=2500 cm-1 and 
ωb0=1450 cm-1, respectively. 

For both H2O and HOD, the dominant 
mechanism by which vibrational energy in 
stretching vibrations dissipates to the 
environment is through stretch-bend coupling. 
An anharmonic coupling exists by which 
vibrational energy flows from the stretch to the 
v=2 state of the bend (bend overtone). That is, 
annihilation of one quantum of stretch leads to 
two quanta in the bend. The energy difference is 
made up by the bath. We will be investigating 
this vibrational energy transfer process treating 
the bend overtone as a sink for vibrational 
energy in the stretches. For our purposes, we 
take the energy of the bend overtone states to be 
ωb=3250 cm-1 and ωb=2900 cm-1 for H2O and 
HOD respectively. 

The values of the couplings V between the stretches and bend overtones are as follows. In 
the case of H2O, the bend overtone has the same symmetry as the symmetric state, leading to strong 
mixing in comparison to the asymmetric state.  Let’s take Vab= 15 cm-1 and Vsb= 50 cm-1. In the 
case of HOD, the coupling of stretch to bend overtone is about the same Vhb = Vdb = 30 cm-1. 

a)	 Assuming that these vibrations interact linearly with a harmonic bath, write expressions for 
the rate of vibrational energy relaxation from each stretch state of H2O and HOD to the bend 
overtone in terms of the coupling V, the density of states of the bath W, and the thermal 
occupancy of the bath. 

b) Using the HOD and H2O molecules as examples, explain under what circumstances do you 
expect to: 
i) …observe Arrhenius vibrational relaxation behavior? (That is, when do you have 

linear scaling between ln[k] and 1/T?) 

ii) …observe rates that increase linearly with temperature? 

iii) What about rates independent of temperature? 


c)	 In certain cases it is observed that vibrational relaxation rates decrease with increasing 
temperature.  Explain the types of circumstances that can lead to this behavior.  
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d)	 To examine a specific example of temperature dependent vibrational relaxation rates, let’s 
assume that that the density of states (DOS) for the bath takes on a normalized Ohmic form 

W ( ) = 
ω 

2 e
−ω /ωcω A 

ωc 

where ωc defines the characteristic maximum in the DOS, and that DOS shifts to higher 
frequencies with temperature. We will describe the shift with temperature through the 

−1relationship ω T (0.3cm  / K= ⋅ ) and take A = 5.c 

Calculate and plot the temperature-dependent vibrational relaxation rate from each stretch 
mode to the bend overtone for T = 50 to 350 K.  Explain the temperature dependence 
observed. What is the fastest rate observed? 

e)	 Now, let’s numerically calculate time-dependent populations in all vibrational modes during 
the vibrational relaxation of population prepared in the symmetric stretching mode of H2O. 
In addition to the couplings above, we expect that the two stretch modes are coupled by Vas 
= 50 cm-1. Start by writing the first-order rate equations that explain the population flow 
between the bend and stretch modes. Then numerically evaluate the time-dependent 
populations in the a, s, and b states by integrating these differential equations using the same 
routines you used in Problem Set 1.  For simplicity, you may assume that the bend mode is a 
sink from which population may not return to the bends, i.e. kab = ksb = kbb = 0. Examine and 
explain the population flow for temperatures between 50 and 350 K. 


