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A Classical Description of Spectroscopy 
The traditional quantum mechanical treatment of spectroscopy is often a rather static 

representation of the rather dynamic process of light interacting with matter.  The dynamic picture 

emerges from a time-domain description, which is similar to the classical treatment of 

spectroscopy. Much of the physical intuition that is helpful in understanding the nature of light-

matter interaction in spectroscopy naturally emerges from the classical view.  Let’s review that: 

The classical view begins with the observation that atoms and molecules are composed of 

charged particles, and these charges are the handle by which an electromagnetic field exerts a force 

on the atom or molecule.  The force exerted on the molecules depends on the strength of the field, 

the magnitude of the charges, and how far the charges move.   

The simplest elements of a model that captures what happens in absorption spectroscopy 

require us to consider a charged particle in a bound potential interacting with a harmonic driving 

force. The matter can be expressed in terms of a particle with charge q under the influence of a 

harmonic potential (the leading term in the expansion of any bound potential in the coordinate Q): 

V t( ) = 
1 kQ  2 , (1)
2 

The light field we will take as plane electromagnetic waves. The simplest expression for the light-

matter interaction potential is 

V t( ) = −μ ⋅E t( ) , (2) 

the electric field interacting with the dipoles of the system. 

The classical description of this system starts with Newton’s equation of motion F=ma, 

which we write as 

m ∂
2Q 

= Fres + Fdamp + Fext (3)
∂t 2 

On the right hand side of eq. (3) there are three forces: the harmonic restoring force, a damping 

force, and the external driving force exerted by the light.  Remembering that  

∂VF = −  (4)
∂Q 

We can write eq. (4) as  

m ∂
2Q 

2 = −kQ  −b ∂Q 
+ F0 cos ( )ωt (5)

∂t ∂t 
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E t ( ) and theHere, for the field, we have only considered the time-dependence ( ) = E0 cos ωt 

amplitude of the driving force 

⎛ ∂μ ⎞
F0 = ⎜ ⎟ ⋅E0 . (6) 

⎝ ∂Q ⎠ 

Eq. (6) indicates that increasing the force on the oscillator is achieved by raising the magnitude of 

the field, increasing how much the charge is displaced, or improving the alignment between the 

electric field polarization and the transition dipole moment. 

We can re-write eq. (5) as the driven harmonic oscillator equation: 

∂2Q
+ 2γ ∂Q

+ω 2Q = 
F0 cos  ( )ωt (7)

∂t2 ∂t 0 m 

Here the damping constant γ = / 2 and the harmonic resonance frequency ω0 =b m  k m . 

Let’s first look at the solution to eq. (7) for a couple 

of simple cases.  First, for the case that there is no damping 

or driving force (γ = F0 = 0 ), we have simple harmonic 

solutions in which oscillate at a frequency ω0 : 

Q t( ) = A sin (ω0t ) + B cos (ω0t ) . Let’s just keep the sin 

term for now. Now if you add damping to the equation: 

Q t( ) = Ae−γ t sin Ω0t . The coordinate oscillates at a reduced 

frequency Ω =  ω 2 −γ 2 . As we continue, let’s assume a 0 0 

case with weak damping for which Ω ≈ω .0 0 

The full solution to eq. (7) takes the form 

0Q t( ) = 
F m  sin (ωt + β ) (8) 

2 2 2 2(ω0 −ω )2 
+ 4γ ω  

ω 2 −ω 2 

Where  tan β = 0 . (9)
2γω 

So this solution to the displacement of the particle says that the amplitude certainly depends on the 

magnitude of the driving force, but more importantly on the resonance condition.  The frequency 

of the driving field should match the natural resonance frequency of the system, ω0 ≈ω …like 
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pushing someone on a swing. When you drive the system at the resonance frequency there will be 

an efficient transfer of power to the oscillator, but if you push with arbitrary frequency, nothing 

will happen. Indeed, that is what an absorption spectrum is: a measure of the power absorbed by 

the system from the field.   

Notice that the coordinate oscillates at the driving frequency ω and not at the resonance 

frequency ω0. Also, the particle oscillates as a sin, that is, 90° out-of-phase with the field when 

driven on resonance. This reflects the fact that the maximum force can be exerted on the particle 

when it is stationary at the turning points.  The phase shift β, depends varies with the detuning 

from resonance.   

Now we can make some simplifications to eq. (8) and calculate the absorption spectrum. 

For weak damping γ <<ω0 and near resonance ω0 ≈ω , we can write 

2 2 2 2 2 2 2(ω0 −ω ) = (ω0 −ω)  (  ω0 +ω) ≈ 4ω0 (ω0 −ω) (10) 

The absorption spectrum is a measure of the power transferred to the oscillator, so we can calculate 

it by finding the power absorbed from the force on the oscillator times the velocity, averaged over 

a cycle of the field.  

P = F t  ( )  ⋅ ∂Q 
avg ∂t avg 

γ F0
2 1 

(11) 
= 

2m (ω −ω )2 
+γ 2 

0 

This is the Lorentzian lineshape, which is peaked at the 

resonance frequency and has a linewidth 

of 2γ (full width half-maximum, FWHM).  The area 

under the lineshape is π F0
2 4m . 


