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4.1. INTERACTION OF LIGHT WITH MATTER 

One of the most important topics in time-dependent quantum mechanics for chemists is the 

description of spectroscopy, which refers to the study of matter through its interaction with light 

fields (electromagnetic radiation). Classically, light-matter interactions are a result of an oscillating 

electromagnetic field resonantly interacting with charged particles.  Quantum mechanically, light 

fields will act to couple quantum states of the matter, as we have discussed earlier.   

Like every other problem, our starting point is to derive a Hamiltonian for the light-matter 

interaction, which in the most general sense would be of the form 

H H  H H= M + L + LM . (4.1) 

The Hamiltonian for the matter HM is generally (although not necessarily) time independent, 

whereas the electromagnetic field HL  and its interaction with the matter HLM are time-dependent. 

A quantum mechanical treatment of the light would describe the light in terms of photons for 

different modes of electromagnetic radiation, which we will describe later.   

We will start with a common semiclassical treatment of the problem. For this approach we 

treat the matter quantum mechanically, and treat the field classically. For the field we assume that 

the light only presents a time-dependent interaction potential that acts on the matter, but the matter 

doesn’t influence the light.  (Quantum mechanical energy conservation says that we expect that the 

change in the matter to raise the quantum state of the system and annihilate a photon from the 

field. We won’t deal with this right now).  We are just interested in the effect that the light has on 

the matter. In that case, we can really ignore HL , and we have a Hamiltonian that can be solved in 

the interaction picture representation: 

H H  H t  + ( )≈ M LM

H V+ ( )  
(4.2) 

= 0 t 

Here, we’ll derive the Hamiltonian for the light-matter interaction, the Electric Dipole 

Hamiltonian. It is obtained by starting with the force experienced by a charged particle in an 

electromagnetic field, developing a classical Hamiltonian for this system, and then substituting 

quantum operators for the matter: 

Andrei Tokmakoff, MIT Department of Chemistry, 2/7/2008 
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p →−i=∇̂ 
(4.3) 

x → x̂ 

In order to get the classical Hamiltonian, we need to work through two steps: (1) We need 

to describe electromagnetic fields, specifically in terms of a vector potential, and (2) we need to 

describe how the electromagnetic field interacts with charged particles. 

Brief summary of electrodynamics 

Let’s summarize the description of electromagnetic fields that we will use.  A derivation of the 

plane wave solutions to the electric and magnetic fields and vector potential is described in the 

appendix. Also, it is helpful to review this material in Jackson1 or Cohen-Tannoudji, et al.2 

>	 Maxwell’s Equations describe electric and magnetic fields ( , .E B ) 
> 	 To construct a Hamiltonian, we must describe the time-dependent interaction potential (rather 

than a field). 

> 	 To construct the potential representation of E  and B , you need a vector potential ( , ) andA r t

a scalar potentialϕ (r t, ) . For electrostatics we normally think of the field being related to the 

electrostatic potential through E = −∇ϕ , but for a field that varies in time and in space, the 

electrodynamic potential must be expressed in terms of both A  andϕ . 

> 	 In general an electromagnetic wave written in terms of the electric and magnetic fields requires 

6 variables (the x,y, and z components of E and B). This is an overdetermined problem; 

Maxwell’s equations constrain these. The potential representation has four variables 

( A , ,A A  andϕ ), but these are still not uniquely determined. We choose a constraint – a x	 y z 

representation or guage – that allows us to uniquely describe the wave. Choosing a gauge such 

that ϕ = 0 (Coulomb gauge) leads to a plane-wave description of E  and B : 

A r t
−∇	 A r t, + = 0 (4.4)2 ( ) 1

2 

∂2 ( 
2

, ) 
c ∂t 

∇⋅ =A 0	 (4.5) 

1 Jackson, J. D. Classical Electrodynamics (John Wiley and Sons, New York, 1975). 

2 Cohen-Tannoudji, C., Diu, B. & Lalöe, F. Quantum Mechanics (Wiley-Interscience, Paris, 1977), Appendix III.
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This wave equation allows the vector potential to be written as a set of plane waves:   

( )  , = A0ε̂  e ( ⋅ −ωt ) 
0 

−i k r  ( ωt ) . (4.6)A r t 
i k r  

+ A*ε̂  e ⋅ −  

This describes the wave oscillating in time at an angular frequency ω and propagating in space 

in the direction along the wavevector k , with a spatial period λ = 2π k . The wave has an 

amplitude A0  which is directed along the polarization unit vector ε̂ . Since ∇⋅ A = 0 , we see 

that k ε̂  or k ⊥ε .⋅ = 0 ˆ From the vector potential we can obtain E and B 

∂AE = −  
∂t 

= i A0 ˆ ⎛⎜e ( ⋅ −ωt ) −e −i k r  ( ωt ) ⎞
⎟ 

(4.7) 
ω ε  

i k r  ⋅ −  

⎝ ⎠

B = ∇× A 

= i k ×ε̂  A ⎛ e
i k r  ( ⋅ −ω ) − e 

−i k r  ) ⎞( ) 0 ⎜⎝ 
t ( ⋅ −  ωt 

⎟
⎠

 (4.8) 

If we define a unit vector along the magnetic field polarization as b̂ = (k ×ε̂ ) k = ×  k̂ ε̂ , we 

see that the wavevector, the electric field polarization 

and magnetic field polarization are mutually 

orthogonal ˆ ε̂  b̂k ⊥ ⊥  . 

Also, by comparing eq. (4.6) and (4.7) we see that 

the vector potential oscillates as cos(ωt), whereas the 

field oscillates as sin(ωt). If we define  

1 
2 

E0 = i A0ω (4.9) 

1 
2 

B0 = i k A0 (4.10) 

then, 
( )E r t  , = E0 ε̂  sin  (k  r  ⋅  −ωt ) (4.11) 

B (r t, ) = B0 b̂ sin  ( ⋅  −  ωt )k  r  . (4.12) 

Note, E0 B0 =ω k = c . 
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Classical Hamiltonian for radiation field interacting with charged particle 

Now, let’s find a classical Hamiltonian that describes charged particles in a field in terms of the 

vector potential.  Start with Lorentz force3 on a particle with charge q: 

F q E v B .= ( + × ) (4.13) 

Here v  is the velocity of the particle. Writing this for one direction (x) in terms of the Cartesian 

components of E , v and B , we have: 

F  q E v+ B v− B . (4.14)= x ( x  y z  z y  ) 
In Lagrangian mechanics, this force can be expressed in terms of the total potential energy U as 

∂U d U  ⎛ ∂ ⎞
Fx = −  + ⎜ ⎟ (4.15)

∂x dt v⎝ ∂ x ⎠

Using the relationships that describe E and B  in terms of A andϕ , inserting into eq. (4.14), and 

working it into the form of eq. (4.15), we can show that:   

U q  qϕ − v ⋅= A (4.16) 

This is derived in CTDL,4 and you can confirm by replacing it into eq. (4.15).  

Now we can write a Lagrangian in terms of the kinetic and potential energy of the particle  

L T U  (4.17)= −

L = 
1 mv 2 + qv A q  (4.18)⋅ − ϕ 
2 

The classical Hamiltonian is related to the Lagrangian as 

H p v L= ⋅ −  
(4.19)

= ⋅p v − 1
2 mv 2 − q v A q⋅ − ϕ 

∂LRecognizing p = = mv qA (4.20)+ 
∂v 

we write v = m
1 ( − A (4.21)p q ) . 

Now substituting (4.21) into (4.19), we have:   

3 See Schatz and Ratner, p.82-83. 
4 Cohen-Tannoudji, et al. app. III, p. 1492. 
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= 1 ⋅ − A − 2
1 − A

2 
− m

q − A A qH  p p q p q p q ⋅ + ϕ (4.22)m ( ) m ( ) ( ) 

2
H = 

2
1 
m 
⎡⎣ p qA ( )  , t ⎦ + ϕ (  )  t− r ⎤ q r , (4.23) 

This is the classical Hamiltonian for a particle in an electromagnetic field.  In the Coulomb 

gauge (ϕ = 0) , the last term is dropped. 

We can write a Hamiltonian for a collection of particles in the absence of a external field  

H0 ⎜ + ( )i ⎟ . (4.24) 
i ⎝ 2mi ⎠ 

=∑
⎛ pi 

2 

V r0 

⎞ 

and in the presence of the EM field:   

H =
⎛ 1 p q− A ( )r 

2 
+V r  ( )⎞ . (4.25)∑ 

i 
⎜
⎝ 2mi 

( i i i ) 0 i ⎟
⎠ 

i 

2
Expanding: H H= 0 −∑

i 2 
q
m

i 

i 
( i ⋅ + ⋅ i 2 

q
m

i 

i 

p A A p ) + ∑ A (4.26) 

Generally the last term is considered small compared to the cross term. This term should be 

considered for extremely high field strength, which is nonperturbative and significantly distorts the 

potential binding molecules together. One can estimate that this would start to play a role at 

intensity levels >1015 W/cm2, which may be observed for very high energy and tightly focused 

pulsed femtosecond lasers.  So, for weak fields we have an expression that maps directly onto 

solutions we can formulate in the interaction picture:   

= 0 + ( ) (4.27)H H  V t

V t = p A A p⋅ . (4.28)( )  ∑ 
i 2 

q
m

i 

i 
( i ⋅ + i ) 

Quantum mechanical Electric Dipole Hamiltonian 

Now we are in a position to substitute the quantum mechanical momentum for the classical.  Here 

the vector potential remains classical, and only modulates the interaction strength. 
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p =	 i=  (4.29)− ∇

V t( ) =∑ i= qi (∇ ⋅A+ A ⋅∇ii )	 (4.30) 
i 2mi 

We can show that ∇⋅A A ⋅∇ . Notice ∇⋅ = ∇⋅A + A ⋅∇  (chain rule).  For instance, if we are =	 A ( ) 
operating on a wavefunction ∇⋅ A ψ = ∇	 A ψ + A ⋅(∇ ψ ) . The first term is zero since we are 

working in the Coulomb gauge (∇⋅A = 0) . Now we have: 

( ⋅	 ) 

=V t( ) =∑ i qi A ⋅∇i 
i mi (4.31) 

= −∑ qi A p ⋅ i 
i mi 

For a single charge particle our interaction Hamiltonian is 

V t( ) = − q A p⋅ 
m 

i k r 	ωt
= −

q ⎡
⎢A0ε̂ ⋅ p e ( ⋅ −  ) + c.c. ⎤⎥	

(4.32) 

m ⎣	 ⎦

Under most circumstances, we can neglect the wavevector dependence of the interaction 

potential. If the wavelength of the field is much larger than the molecular 
ik r k → 0) , then e ⋅ ≈1. This is known as the electric dipole approximation. 

We do retain the spatial dependence for certain types of light-matter interactions.  In that 

case we define r0  as the center of mass of a molecule and expand 

dimension (λ →∞) ( 

⋅ 0 ik r 0ik r ⋅ i ik r ⋅ −( i r )e	 = e e 
= eik r ⋅ 0 ⎡⎣1 + ik ⋅(ri − r0 ) +… ⎤⎦

 (4.33) 

For interactions, with UV, visible, and infrared (but not X-ray) radiation, k r − <<1, and setting i r0 

r0 =0  means that eik r ⋅ →1. We retain the second term for quadrupole transitions: charge 

distribution interacting with gradient of electric field and magnetic dipole.   

 Now, using A0 = iE  0 2ω , we write (4.32) as 

−iqE0 −i tω +i tV t  ( ) = 
2mω 

⎡⎣ε̂  ⋅ p e  − ε̂ ⋅ p e  ω ⎤⎦	 (4.34) 
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V t( ) = −qE0 (ε̂ ⋅ p)sinωt 
mω (4.35)
−q (E t  p  ⋅ )= ( )
mω 

or for a collection of charged particles (molecules):   

V t( ) = − ⎜
⎛
∑ qi (ε̂ ⋅ pi )⎟

⎞ E0 sin ωt (4.36)
⎝ i mi ⎠ ω 

This is known as the electric dipole Hamiltonian (EDH).  

Transition dipole matrix elements 
We are seeking to use this Hamiltonian to evaluate the transition rates induced by V(t) from our 

first-order perturbation theory expression. For a perturbation V t( ) =V0 sinω t the rate of 

transitions induced by field is 

π 2 ⎡δ (E − E − =ω) + δ (E − E + =ω)⎤ (4.37)wkA = VkA ⎣ k A k A ⎦2=

Now we evaluate the matrix elements of the EDH in the eigenstates for H0: 

−qE
= 0k V  0 A k ε̂ ⋅ p A  (4.38)VkA = 

mω 

We can evaluate the matrix element k p A  using an expression that holds for any one-particle 
Hamiltonian: 

= [r H, 0 ] = 
i p . (4.39)
m 

This expression gives 

mk p A = k r H  −H r  A0 0i= 

= 
m ( k r A E − E  k r  A ) (4.40)A ki= 

= imωAk k r A . 

So we have 

(4.41)VkA = − iqE0 
ωAk k ε̂  ⋅r A
ω 
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or for a collection of particles 

VkA = − iE  0 
ω
ω 
Ak k ⋅ q r Aε̂  ⎜

⎛∑ i i  ⎟
⎞ 

⎝ i ⎠ 
ωAk ˆ ⋅= − iE0 k ε μ  A  (4.42)
ω 

= −iE0 
ωAk μklω 

μ is the dipole operator, and μkl is the transition dipole matrix element.  We can see that it is the 

quantum analog of the classical dipole moment, which describes the distribution of charge density 

ρ in the molecule: 

μ = ∫ dr r ρ (r ) . (4.43) 

These expressions allow us to write in simplified form the well known interaction potential 

for a dipole in a field: 

V t( ) = − μ ⋅E t( )  (4.44) 

Then the rate of transitions between quantum states induced by the electric field is 

2 ω2π 2kAwkA = ⎣δ (Ek −E −=ω)  (  E −E + =ω ⎦⎡ A + k A )⎤E0 μkl  ω 22= (4.45)
π 2 2 = ⎣ ( kA −ω)+δ  ω  ( kA +ω)⎤⎦⎡δ  ω  E0 μkl2=2 

 Equation (4.45) is an expression for the absorption spectrum since the rate of transitions 

can be related to the power absorbed from the field. More generally we would express the 

absorption spectrum in terms of a sum over all initial and final states, the eigenstates of H0: 

22 wfi =∑ π 
fi + ( ω⎡δ ω  ( −ω) δ ω  fi + )⎤ (4.46)E0 μ fi2 ⎣ ⎦ 

, =i f  

The strength of interaction between light and matter is given by the matrix 

element μ fi ≡ f μ ε⋅ ˆ i . The scalar part f μ i  says that you need a change of charge 

and  to get effective absorption.  This matrix element is the basis of distribution between f i

selection rules based on the symmetry of the states. The vector part says that the light field must 

project onto the dipole moment.  This allows information to be obtained on the orientation of 

molecules, and forms the basis of rotational transitions. 
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Relaxation Leads to Line-broadening 

Let’s combine the results from the last two lectures, and describe absorption to a state that is 

coupled to a continuum. What happens to the probability of absorption if the excited state decays 

exponentially? 

kP 

k relaxes exponentially 
... for instance by coupling to continuum 

∝exp −w t  [ k ]n

We can start with the first-order expression:   

−i t
bk = ∫t0 

d  k Vτ t (4.47)
=

or equivalently ∂ b = −
i eiωkAt V  t  (4.48)

∂t k = kA ( )  

We can add irreversible relaxation to the description of bk , following our early approach: 

∂ b = −
i eiωkAt V  t  ( ) − wnk b (4.49)

∂t k = kA 2 k 

Or using V t( ) = −iE0μkA sinωt 

∂ b =
−i eiωkAt sinωt V −

wnk b  t  ( )
∂t k = kA 2 k 

(4.50) 

= 
E 
2

0 

i=
ω
ω 

kA 
⎢⎣
⎡ei(ωkA +ω) −ei(ωkA −ω)t 

⎥⎦
⎤ μ −

w 
2 
nk b t( )kA k 

The solution to the differential equation 

y a+ y b= i tα� e  (4.51) 

α 

is y t( ) = Ae−at + 
bei t  

. (4.52)
a iα+ 
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E μ ⎡ ei(ωkA +ω)t ei(ωkA −ω)t ⎤ 
nk 0 kA 

kb t( ) = Ae−w t /2 + 
2i= ⎢

⎣wnk / 2  + i (ωkA +ω)
− 

wnk / 2  + i (ωkA −ω)
⎥
⎦ 

(4.53) 

Let’s look at absorption only, in the long time limit:   

⎡ i(ωkA −ω)t ⎤ 
kb t( ) = 

E 
2
0μ 
=

kA ⎢
⎣ωkA 

e 
ω iwnk  / 2  ⎥

⎦ 
(4.54)

− −  

For which the probability of transition to k is 

2 E0
2 2 

1Pk = = 
4=
μ 

2 
kA 

(ωkA −ω)
2 + wnk  

2 / 4  
(4.55)bk 

The frequency dependence of the transition probability has a Lorentzian form:   

The linewidth is related to the relaxation rate from k into the continuum n. Also the linewidth is 

related to the system rather than the manner in which we introduced the perturbation.   


