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4.3. EINSTEIN B COEFFICIENT AND ABSORPTION CROSS-SECTION

The rate of absorption induced by the field is

w,, () th\ (o) [(k|&-a|0) 5(a, - ) (4.56)

The rate is clearly dependent on the strength of the field. The variable that you can most easily
measure is the intensity I, the energy flux through a unit area, which is the time-averaged value of

the Poynting vector, S
s=—"(ExB) (4.57)
| =(S)=—(E?)="EZ. (4.58)

(Note, I’ve rather abruptly switched units to cgs). Using this we can write

4r®

W =2 1 (@)[(K[é- alof s(o, o), (4.59)

where | have also made use of the uniform distribution of polarizations applicable to an isotropic
. — . = A |= 4 1 . . .
f|eld:‘Eo-x‘z‘Eo-y‘z‘Eo-z‘:§|Eo|2. An equivalent representation of the amplitude of a

monochromatic field is the energy density

U ZIE:siEZ (4.60)
JT

which allows the rates of transition to be written as

W, =B, U (a’w) (4.61)

The first factor contains the terms in the matter that dictate the absorption rate. B is independent of

the properties of the field and is called the Einstein B coefficient

B, = 2 (462)

You may see this written elsewhere as B,, = (27:/3?1 )|,uk/| which holds when the energy density
of a wave is expressed in Hz instead of angular frequency.

Andrei Tokmakoff, MIT Department of Chemistry, 2/12/2008
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If we associate the energy density with a number of photons N, then U can also be written in a

guantum form

2 3
NAw =2 u=-N"2
87 °C

(4.63)

Now let’s relate the rates of absorption to a quantity that is directly measured, an

absorption cross-section a:

o total energy absorbed / unit time
total incident intensity (energy / unit time / area)

_ho-w, ho-B,U(a,)

= 4.64
I cU (a,) (4.64)
4r? hao
:h_ﬂ(;|/’lké|2 =TBkl

More generally, you may have a frequency-dependent absorption coefficient a(a))oc Bu(w)
=B,, g (@) where g() is a unit normalized lineshape function. The golden rule rate for absorption

also gives the same rate for stimulated emission. Given two levels |m)and |n):

W =W

BimU (@) =B U (@) since U (@,, )=V (®,,) (4.65)
Bnm = an

The absorption probability per unit time equals the stimulated emission probability per unit time.

Also, the cross-section for absorption is equal to an equivalent cross-section for stimulated
emission, (a,) =(ag)

mn
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We can now use a phenomenological approach to calculate the change in the intensity of
incident light, due to absorption and stimulated emission passing through a sample of length L

where the levels are thermally populated. Given that we have a thermal distribution of identical

non-interacting particles, with quantum states such that the level | m) is higher in energy than |n>:
k

dle—NnaA dx+ N, o dx (4.66)

dI—I:—(Nn—Nm)adx (4.67)

Here N, and N_ are population of the upper and lower states, but expressed as a population
densities. If N is the molecule density,

e_ngn
N, = N( . j (4.68)

Integrating (4.67) over a pathlength L we have

T= L _ e—ANaL (4.69)

IO
~ g Nl N:cm® a:cm? L:cm

We see that the transmission of light through the sample decays exponentially as a function of path

length. AN =N_—N_ is the thermal population difference between states. The second expression

comes from the high frequency approximation applicable to optical spectroscopy, but certainly not

for magnetic resonance: AN ~ N . Written as the familiar Beer-Lambert Law:

A=—|og|l=gCL. (4.70)
0
C:mol/liter ¢ :liter / mol cm
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