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5.1. TIME-CORRELATION FUNCTIONS 

Time-correlation functions are an effective and intuitive way of representing the dynamics of a 

system, and are one of the most common tools of time-dependent quantum mechanics. They 

provide a statistical description of the time-evolution of a variable for an ensemble at thermal 

equilibrium.  They are generally applicable to any time-dependent process for an ensemble, but 

are commonly used to describe random (or stochastic) and irreversible processes in condensed 

phases. We will use them in a description of spectroscopy and relaxation phenomena.   

This work is motivated by finding a general tool that will help us deal with the inherent 

randomness of molecular systems at thermal equilibrium. The quantum equations of motion are 

deterministic, but this only applies when we can specify the positions and momenta of all the 

particles in our system.  More generally, we observe a small subset of all degrees of freedom (the 

“system”), and the time-dependent properties that we observe have random fluctuations and 

irreversible relaxation as a result of interactions with the surroundings.  It is useful to treat the 

environment (or “bath”) with the minimum number of variables and incorporate it into our 

problems in a statistical sense – for instance in terms of temperature.  Time-correlation functions 

are generally applied to describe the time-dependent statistics of systems at thermal equilibrium, 

rather than pure states described by a single wavefunction. 

Statistics 

Commonly you would describe the statistics of a measurement on a variable A in terms of the 

moments of the distribution function, P(A), which characterizes the probability of observing A 

between A and A+dA

A dA A P A Average: = ∫ ( ) (5.1) 

A2Mean Square Value: = ∫ dA  A  2 P A  ( ) . (5.2) 

Similarly, this can be written as a determination from a large number of measurements of the 

value of the variable A: 
N 

A = 
1 ∑ Ai (5.3)
N i=1 

A2 1 N 
2= ∑ Ai . (5.4)

N i=1 
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The ability to specify a value for A is captured in the 

variance of the distribution 
2A2σ 2 = − A (5.5) 

The observation of an internal variable in a statistical  

sense is also intrinsic to quantum mechanics. A 

fundamental postulate is that the expectation value 

Âof an operator = ψ Â ψ  is the mean value of A obtained over many observations.  The 

2probability distribution function is associated with ψ dr . 

To take this a step further and characterize the statistical relationship between two 

variables, one can define a joint probability distribution, P(A,B), which characterizes the 

probability of observing A between A and A+dA and B between B and B+dB. The statistical 

relationship between the variables can also emerges from moments of P(A,B). The most 

important measure is a correlation function 

CAB = AB  − A B (5.6) 

You can see that this is the covariance – the variance for a bivariate distribution.  This is a 

measure of the correlation between the variables A and B, that is, if you choose a specific value 

of A, does that imply that the associated values of B have different statistics from those for all 

values. To interpret this it helps to define a correlation coefficient  

r = 
CAB . (5.7)

σ σA B  

ρ can take on values from +1 to −1. If r = 1 then there is perfect correlation between the two 

distributions. If the variables A and B depend the same way on a common internal variable, then 

they are correlated. If no statistical relationship exists between the two distributions, then they 

are uncorrelated, r = 0, and AB = A B . It is also possible that the distributions depend in an 

equal and opposite manner on an internal variable, in which case we call them anti-correlated 

with r = −1. 

Equation (5.6) can be applied to any two different continuous variables, but most 

commonly these are used to describe variables in time and space. For the case of time-correlation 
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functions that we will be investigating, rather than two different internal variables, we will be 

interested in the value of the same internal variable, although at different points in time. 

Equilibrium systems 
For the case of a system at thermal equilibrium, we describe the probability of observing a 

variable A through an equilibrium ensemble average A . Classically this is  

A = ∫ p ∫ p q  , ) (5.8)d dq A( , ;t ) ρ (p q

where ρ is the canonical probability distribution for an equilibrium system at temperature T 
−β H 

ρ =
e (5.9)

Z 

Z is the partition function and β=kBT. In the quantum mechanical case, we can write  

A = ∑ pn n A n (5.10) 
n 

where pn = e−β En / Z (5.11) 

Equation (5.10) may not seem obvious, since it is different than our earlier 

expression A = a a A  = Tr (ρ A) . The difference is that in the present case, we are ∑ n 
* 

m mn 
,n m  

dealing with a statistical mixture or mixed state, in which no coherences (phase relationships) 

are present in the sample.  To look at it a bit more closely, the expectation value for a mixture 

A = ∑ pk ψ k A (5.12)ψ k 
k 

can be written somewhat differently as an explicit sum over N statistically independent 

molecules  

1 N 
( )i * ( )iA = ∑∑(an ) am n A m (5.13) 

i=1 ,N n m  

By statistically independent, we mean that the molecules interact only with their 

surroundings and not with each other.  They have no knowledge of each other. Then, the sum 

over molecules is just the ensemble averaged value of the expansion coefficients 

= ∑
 *
A  a a  n A m  (5.14)n m 
,n m  
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We can evaluate this average recognizing that these are complex numbers, and that the 

equilibrium ensemble average of the expansion coefficients is equivalent to phase averaging 

over the expansion coefficients.  Since at equilibrium all phases are equally probable   

1 2π * 1* a a  = a a d  φ = a a ∫
2π e−iφnm dφnm (5.15)n m ∫ n m  n  m0 02π 2π 

where a = a eiφn andφnm = φn −φm . The integral in (5.15) is quite clearly zero unless φn = φm ,n n 

giving 
−β E 

* a a  = pn =
e n

 (5.16)n m Z 

Of course, even at equilibrium the expectation value of A for a member of ensemble as a function 

of time A t . Although the behavior of A t  may be well-defined and periodic, for mixed i ( ) ( )i

states it generally is observed to fluctuate randomly: 

The fluctuations are about a mean value A . Given enough time, we expect that one molecule 

will be able to sample all of phase space, and therefore the sum over all instantaneous values of 

A for one molecule should represent the equilibrium probability distribution for that variable, 

P(A). This is then related to the free energy projected onto A as 

( ) P A  ( ) (5.17)F A = −β ln 

If we look at this behavior there seems to be little information in the random fluctuations 

of A, but there are characteristic time scales and amplitudes to these changes.  We can 

characterize these by comparing the value of A at time t with the value of A at time t’ later. With 
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that in mind we define a time-correlation function (TCF) as a time-dependent quantity, A t( ) , 

multiplied by that quantity at some later time, A(t′) , and averaged over an equilibrium 

ensemble: 

CAA (t t  , ′) ≡ A t  ( ) A t  ( ′) (5.18) 

Technically this is an auto-correlation function, which correlates the same variable at two points 

in time, whereas the correlation of two different variables in time is described through a cross-

correlation function 

CAB (t t  , ′) ≡ A t  ( ) B t  ( ′) (5.19) 

Following (5.8), the classical correlation function is 

t t  , ′ = d dq A , ;t A , ;t ' p q  (5.20) 

while from (5.10) we can see that the quantum correlation function can be evaluated as 

CAA (t t  , ′) = ∑ pn 

CAA (  )  ∫ p ∫ (p q  ) (p q  ) ρ ( , ) 

n  A t  ( ) A t  ( ′) n . (5.21) 
n 

So, what does a time-correlation function tell us? Qualitatively, a TCF describes how 

long a given property of a system persists until it is averaged out by microscopic motions and 

interactions with its surroundings.  It describes how and when a statistical relationship has 

vanished. We can use correlation functions to describe various time-dependent chemical 

processes. We will use μ t μ 0 -the dynamics of the molecular dipole moment- to describe ( )  ( )

spectroscopy. We will also use is for relaxation processes induced by the interaction of a system 

and bath: HSB t H 0 . Classically, you can use if to characterize transport processes.  For 

instance a diffusion coefficient is related to the velocity correlation function: 

1 ∞ 

( )  SB ( )

D = dt v  t v  0( )  (  )  
3 ∫0 
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Properties of Correlation Functions 

A typical correlation function for random fluctuations in the variable A might look like: 

A2 

CAA (t t  , ') 
2A 

t 
and is described by a number of properties: 

1. 	 When evaluated at t = t’, we obtain the maximum amplitude, the mean square value of A, 

which is positive for an autocorrelation function and independent of time.  

A2CAA (t t  ,	 ) = = ≥ 0	 (5.22)A t  ( ) A t  ( ) 

2. 	 For long time separations, the values of A become uncorrelated 
2lim C	 (t t  , ') = A t  ( )' = A (5.23)A t  ( )  

t→∞	 AA 

3. 	 Since it’s an equilibrium quantity, correlation functions are stationary. That means they 

do not depend on the absolute point of observation (t and t’), but rather the time-interval 

between observations. A stationary random process means that the reference point can be 

shifted by a value T 

, ( T t  . 	(5.24)CAA (t t  ′) = CAA t + , ′ + T ) 

 So, choosingT = −t′ , we see that only the time interval t t− ′ ≡τ  matters 

CAA (t t  , ′) = CAA (t − t′,0  ) = CAA (τ ) (5.25) 

Implicit in this statement is an understanding that we take the time-average value of A to 

be equal to the equilibrium ensemble average value of A. This is the property of ergodic 

systems. 
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More on Stationary Processes1 

The ensemble average value of A  can be expressed as a time-average or an ensemble 

average. For an equilibrium system, the time average is 
T

A = lim 1 dt A  t  ( ) 	 (5.26)iT→∞ T ∫0 

and the ensemble average is  

∑ e−β En

A = n A n . 	(5.27) 
n Z 

These quantities are equal for an ergodic system A = A . A system is ergodic if the 

evolution of one member of the ensemble has evolved long enough to sample the 

equilibrium probability distribution. We assume this property for our correlation 

functions. So, the correlation of fluctuations can be expressed as either a time-average 

over a trajectory 

A t  A  ( )  ( )  = lim 1 
∫

T 
τ i ( +τ Ai τ	 (5.28)0 d  A t  )  ( )  

T→∞ T 0 

or an equilibrium ensemble average 
−β E 

= ∑ e n

A t  A 	0 n A t  A 	0 n (5.29)( )  ( )  ( )  ( )  
n Z 

4. 	 Classical correlation functions are real and even in time: 

A t  A t  = A t  A t  ( ) (	 ′) ( ′) (	 ) 
(5.30)

( )τ = C ( )  CAA AA −τ 

5. 	 When we observe fluctuations about an average, we often redefine the correlation 

function in terms of the deviation from average   

δ A A≡ − A (5.31) 

2C A A ( )t = (5.32)A 0 = AA	 t Aδ A t  ( )  δ ( )  C ( ) −δ δ  

Now we see that the long time limit when correlation is lost lim Cδ δ  t = 0 , and the zeroA A ( )
t→∞ 

time value is just the variance 
2A2Cδ δ  ( ) = δ A2 = − A (5.33)A A  0 
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6. The characteristic time-scale of a random process is the correlation time, τ c . This 

characterizes the time scale for TCF to decay to zero. We can obtain τ c  from 

1 ∞ 

τ = ∫ dt (5.34)δ A t δ A 0( )  ( )  c δ A2 
0 

which should be apparent if you have an exponential formC t( ) = C 0 exp  (( )  −t /τ ) .c 

Examples of Time-Correlation Functions 

EXAMPLE 1: Velocity autocorrelation function for gas.   

Vx : x̂  Component of molecular velocity Vx = 0 

kTCV V  ( )t = V  t V  0 CV V  ( ) = V 2 ( )00 =( )  ( )x x xx x x x m 

Ideal gas: 
• No collisions.   
• Velocities are unchanged over t. 

kT / m 

CV V  ( )t 
x x

t 
Dilute gas:  Infrequent collisions 

( ) = V 0 for  t  <τ kT / m V t  ( )  x x c 

( ) = V 0 ± δ for  t  >τ CV V  ( )tV t  ( )  
%

x x c x x  

• τc is related to mean time between collisions.  

• After collisions, correlation is lost. τc t 
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EXAMPLE 2: Dipole moment for diatomic molecule in dilute gas: μi . 

= 0 (all angles are equally likely in an isotropic system)μi


μi = μ0 ⋅ û (the dipole has a magnitude and direction) 


μ2
0 

Cμμ ( )t = t μμ ( )  ( )0 

ˆ ⋅ ˆ 0= μ0
2 u t  u( )  ( )  

The correlation function 
projects the time-dependent 
orientation onto the initial 
orientation 

oscillation frequency gives 

collisional damping 

moment of inertia 

EXAMPLE 3: Displacement of harmonic oscillator. 

mq&& κq → q&&= ω2q q t( ) = q 0 cosωt= − −  ( )

kT0 =Since q2 ( )  
mω 2 

kT / mω2 

C t  = q t q 0 = q 0 cosωtqq ( )  ( )  ( )  2 ( )  

= ⎜
⎛ kT 

2 ⎟
⎞ cosωt 

⎝ mω ⎠ 

damping will cause Cqq to decay 
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5.2. QUANTUM CORRELATION FUNCTIONS 

Quantum correlation functions involve the equilibrium (thermal) average over a product of 

Hermetian operators evaluated two times. The thermal average is implicit in 

writingCAA ( )  t t  , ′ = A t  ( )  ( )  A t  ′ . Naturally, this also invokes a Heisenberg representation of the 

operators, although in almost all cases, we will be writing correlation functions as interaction 

I e 0 0 .picture operators A t( ) = iH t Ae−iH t 

To emphasize the thermal average, the quantum correlation function can also be written 
as 

−β H 

(5.35) 

If we evaluate this in a basis set 

C  t t  , ′ = A t  A t  ′ AA ( )  e
Z 

( )  ( )  

n , inserting a projection operator leads to our previous 

expression 

CAA (t t  , ′) = ∑ pn n  A t  ( ) A t  ( ′) n (5.36) 
n 

Z . Given the case of a time-independent Hamiltonian for which we have 

knowledge of the eigenstates, we can also express this in the Schrödinger picture  

CAA ( )  t t  , ′ = ∑ 

with pn = e−β En

n 

= ∑ 
n 

( )  ( )  ( )  ( )  

( ) ( ) 

( ) 

) 

† † 

mn 

n 

n 

n 

n  mn  

p  AU  t  U  AU  A  

(2 

n 

mn 

i t t 

i t t 

i t t 

n  U  t  t  t  n  

p n  AU  t  t  A  n  e  

p n  A  m  m  A  n  e  

p A  e  

ω 

ω 

ω 

− ′  

−  − ′  

−  − ′  

′ ′ 

′− 

uuuuuuuuuur suuuuuuuu

 (5.37) 
= ∑ 

,n m  

= ∑ 
,n m  

Properties of Quantum Correlation Functions 

There are a few properties of quantum correlation functions that can be obtained using the 

properties of the time-evolution operator.  First, we can show the property of stationarity, which 

we have come to expect: 
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= U † (t ) A(0)U (t U) † (t′) A(0)U (t′)A t( )  ( )A t′ 

= U t′ t ( )  t( )U † ( ) AU t U † ( ) ′ A 
(5.38)

′ ′= U † (t − t AU) (t )− t A  

= A t( − t′) ( )A 0 

Also, we can show that 
* 

A t A  0− = A t( )  ( )A 0 = 0 (5.39)( ) ( )  A( )  ( )A t 

or CAA 
* (t ) = CAA (−t ) (5.40) 

This follows from 
A( )0 A t( ) = A(0)U † AU = U AU † A 

(5.41) 
= A t A  0−( ) ( )  

** 
= U † AU A = U AU † AA t( )  ( )A 0 

(5.42) 
= 0A( )  ( )A t 

Note that the quantum CAA (t ) is complex. You cannot directly measure a quantum 

correlation function, but observables are often related to the real or imaginary part of correlation 

functions, or other combinations of correlation functions. 

C (t ) = C′ (t ) + i C′′ (t ) (5.43)AA AA AA 

⎤ 
2 2 ⎦ 

(5.44) 
C′ t = ⎡C t + C t ⎤ = ⎡ A t A 0 + A 0 A tAA ( )  1 

⎣ AA ( )  AA 
* ( ) ⎦ 

1 
⎣ ( )  ( )  ( )  ( )  

1 
= ⎣ , A⎡A t( )  ( )0 ⎤⎦ +2 

⎤C′′ ( )t = 
1 ⎡C ( )t − C* t 1 A t( )  ( )A 0 + 0A( )  ( )A tAA 2i ⎣ AA AA ( ) ⎤⎦ = 

2i 
⎡⎣ ⎦ 

(5.45)
1 

= ⎣ , A ⎦⎡A t( )  ( )0 ⎤ 
2i 

We will see later in our discussion of linear response that C′  and C′′  are directly proportionalAA AA 

to the step response function S and the impulse response function R, respectively. R describes 

how a system is driven away from equilibrium by an external potential, whereas S describes the 

relaxation of the system to equilibrium when a force holding it away from equilibrium is 

released. The two are related by R S t∝ ∂  ∂  . 
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We can also define a spectral or frequency-domain correlation function by Fourier 

transforming the TCF. 

AA ( ) = F ⎣CAA (  )  ⎦ = ∫−∞ 
dt  e ω CAA t (5.46)C% ω % ⎡ t ⎤ 

+∞ i t  ( )  

For a time-independent Hamiltonian, as we might have in an interaction picture problem, the 

TCF in eq. (5.37) gives 
2ω p A ( − ) . (5.47)δ ω  ωC% AA ( ) = ∑ n mn mn 

,n m  

This expression looks very similar to the Golden rule transition rate from first order perturbation 

theory. In fact, the Fourier transform of time correlation functions evaluated at the energy gap 

gives the transition rate between states that we obtain from 1st order perturbation theory. Note 

that this expression is valid whether the initial states n are higher or lower in energy than final 

states m, and accounts for upward and downward transitions. If we compare the ratio of upward 

and downward transition rates between two states i and j, we have 

%C 
% 

AA (ωij ) = 
p j = eβ Eij . (5.48)

CAA (ω ji ) pi 

This is one way of showing the principle of detailed balance, which relates upward and 

downward transition rates at equilibrium to the difference in thermal occupation between states: 

C% AA (ω) = eβ hω C% AA (−ω) . (5.49) 
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5.3. TRANSITION RATES FROM CORRELATION FUNCTIONS 
We have already seen that the rates obtained from first-order perturbation theory are related to 

the Fourier transform of the time-dependent external potential evaluated at the energy gap 

between the initial and final state. Here we will show that the rate of leaving an initially prepared 

state, typically expressed by Fermi’s Golden Rule through a resonance condition in the 

frequency domain, can be expressed in the time-domain picture in terms of a time-correlation 

function for the interaction of the initial state with others.  

The state-to-state form of Fermi’s Golden Rule is  

2π 2 δ ( Ek − El ) (5.50)wkl = Vkl
h

We will look specifically at the case of a system at thermal equilibrium in which the initially 

populated states l  are coupled to all states k. Time-correlation functions are expressions that 

apply to systems at thermal equilibrium, so we will thermally average this expression.   

2 w = p  V  kl δ ( Ek − El ) (5.51)kl 
2π ∑ l
h k ,l 

where pl = e−β El / Z . The energy conservation statement expressed in terms of E or ω can be 

converted to the time-domain using the definition of the delta function   

1 +∞
δ ω( ) = ∫−∞ 

dt ei tω , (5.52)
2π 

giving 

∫−∞ 

i Ek −Elw = p  V  kl 

+∞ 
dt  e  ( )t /h (5.53)kl 

1
2 ∑ l
h k ,l 

iE t 0Writing the matrix elements explicitly and recognizing that eiH t l = e l l , we have 

2 ∫−∞ 

i Ek −Ewmn = 
1 ∑ pl 

+∞ 
dt  e  ( l )t /h 

l V k k V l (5.54)
h k ,l 

iH t iH t = 
1

2 ∑ pl 
+∞ 

dt  l V k k e 0 Ve  − 0 l (5.55)∫−∞h k ,l 

Then, since ∑ =1 
k 

+∞ 
wmn = 

1
2 ∑ pl ∫−∞ 

dt  l l (5.56)( )0 V ( )  VI I t 
h l=m n, 

k k  
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wmn = 
1

2 ∫
+∞ 

dt V  t V  ( )  ( )  0 (5.57)I I
h −∞ 

iH t −iH t 0 0As before V t( ) = e  Ve . The final expression indicates that integrating over a correlation I

function for the time-dependent interaction of the initial state with its surroundings gives the 

relaxation or transfer rate. This is a general expression.  Although the derivation emphasized 

specific eigenstates, eq. (5.57) say that with a knowledge of a time-dependent interaction 

potential of any sort, we can calculate transition rates from the time-correlation function for that 

potential. 

The same approach can be taken using the rates of transition in a equilibrium system 

induced by a harmonic perturbation 

π 2 ⎡ ( −ω) + ( +ω)⎤ , (5.58)wkl = 2 p V  kl∑ l ⎣δ ωkl δ ω  kl ⎦2h l,k m= ,n 

giving a similar expression for the transition rate in terms of a interaction potential time-

correlation function 

+∞ ωwkl = 
1

2 ∫−∞ 
dt e−i t VI 0 

h (5.59) 
( )V  t  I ( )  

1 +∞ i t= 2 ∫−∞ 
dt e ω V t V 0( )  I ( )  I

h

Note that here and in eq. (5.54) the transfer rate is expressed in terms of a Fourier transform 

evaluated either at the resonance frequency ω or at the energy gap Ek − El . Although eq. (5.57) 

is not a Fourier transform, it is in practice the value of the Fourier transform evaluated at zero 

frequency. 


