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10. NONLINEAR SPECTROSCOPY 
10.1. Introduction 
Spectroscopy comes from the Latin “spectron” for spirit or ghost and the Greek “σκοπιεν” for to 

see. These roots are very telling, because in molecular spectroscopy you use light to interrogate 

matter, but you actually never see the molecules, only their influence on the light.  Different 

spectroscopies give you different perspectives. This indirect contact with the microscopic targets 

means that the interpretation of spectroscopy in some manner requires a model, whether it is 

stated or not. Modeling and laboratory practice of spectroscopy are dependent on one another, 

and therefore a spectroscopy is only as useful as its ability to distinguish different models.  The 

observables that we have to extract microscopic information in traditional spectroscopy are 

resonance frequencies, spectral amplitudes, and lineshapes. We can imagine studying these 

spectral features as a function of control variables for the light field (amplitude, frequency, 

polarization, phase, etc.) or for the sample (for instance a systematic variation of the physical 

properties of the sample). 

In complex systems, those in which there are many interacting degrees of freedom and in 

which spectra become congested or featureless, the interpretation of traditional spectra is plagued 

by a number of ambiguities.  This is particularly the case for spectroscopy of disordered 

condensed phases, where spectroscopy is the primary tool for describing molecular structure, 

interactions and relaxation, kinetics and dynamics, and tremendous challenges exist on 

understanding the variation and dynamics of molecular structures.  This is the reason for using 

nonlinear spectroscopy, in which multiple light-matter interactions can be used to correlate 

different spectral features and dissect complex spectra. We can resonantly drive one 

spectroscopic feature and see how another is influenced, or we can introduce time delays to see 

how properties change with time.   

Absorption or emission spectroscopies are referred to as linear spectroscopy, because 

they involve a weak light-matter interaction with one primary incident radiation field, and are 

typically presented through a single frequency axis. The ambiguities that arise when interpreting 

linear spectroscopy can be illustrated through two examples: 
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1) 	 Absorption spectrum with two peaks. 

Do these resonance arise from different, 

non-interacting molecules, or are these 

coupled quantum states of the same 

molecule? (One cannot resolve 

couplings or spectral correlations 

directly).  

2) 	Broad lineshapes. Can you distinguish whether it is a homogeneous lineshape broadened 

by fast irreversible relaxation or an inhomogeneous lineshape arising from a static 

distribution of different frequencies?   (Linear spectra cannot uniquely interpret line-

broadening mechanism, or decompose heterogeneous behavior in the sample). 

homogeneous	 inhomogeneous 

In the end effect linear spectroscopy does not offer systematic ways of attacking these types of 

problems. It also has little ability to interpret dynamics and relaxation. These issues take on more 

urgency in the condensed phase, when lineshapes become broad and spectra are congested. 
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Nonlinear spectroscopy provides a way of resolving these scenarios because it uses multiple light 

fields with independent control over frequency or time-ordering in order to probe correlations 

between different spectral features. For instance, the above examples could be interpreted with 

the use of a double-resonance experiment that reveals how excitation at one frequency ω1 

influences absorption at another frequency ω2. 

What is nonlinear spectroscopy? 
Linear spectroscopy commonly refers to light-matter interaction with one primary incident 

radiation field which is weak, and can be treated as a linear response between the incident light 

and the matter.  From a quantum mechanical view of the light field, it is often conceived as a 

“one photon in/one photon out” measurement.  Nonlinear spectroscopy is used to refer to cases 

that fall outside this view, including: (1) Watching the response of matter subjected to 

interactions with two or more independent incident fields, and (2) the case where linear response 

theory is inadequate for treating how the material behaves, as in the case of very intense incident 

radiation. If we work within the electric dipole Hamiltonian, nonlinear experiments can be 

expressed in terms of three or more transition matrix elements.  The response of the matter in 
2linear experiments will scale as or μab μba , whereas in nonlinear experiments will take a μab 

form such as μ μ μ  . Our approach to describing nonlinear spectroscopy will use the electric ab bc ca 

dipole Hamiltonian and a perturbation theory expansion of the dipole operator.   

10.2. COHERENT SPECTROSCOPY AND THE NONLINEAR POLARIZATION 
We will specifically be dealing with 

the description of coherent nonlinear 

spectroscopy. If you cross three 

intense light fields in a sample, you 

can observe an array of spots behind 

the sample, which may be the same or 

different colors. These are nonlinear 

signals that arise when one or more input fields coherently act on the dipoles of the sample to 

generate a macroscopic oscillating polarization.  This polarization acts as a source to radiate a 
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signal that we detect in a well-defined direction. This class includes experiments such as pump-

probes, transient gratings, photon echoes, and coherent Raman methods. However understanding 

these experiments allows one to rather quickly generalize to other techniques.  

Detection: Coherent Spontaneous 

2 

icoherent i
I μ∝ ∑ 

Dipoles are driven coherently, and 
radiate with constructive interference 

in direction sigk 

2 
.spont i 

i 
I μ∝ ∑ 

Dipoles radiate independently 

sinsigE θ∝ 

Linear: 

Absorption Fluorescence, phosphorescence, Raman, 
and light scattering 

Nonlinear: 

Pump-probe transient absorption, photon 
echoes, transient gratings, CARS, 

impulsive Raman scattering 

Fluorescence-detected nonlinear 
spectroscopy, i.e. stimulated emission 
pumping, time-dependent Stokes shift 

Spontaneous and coherent signals are both emitted from all samples, however, the 

relative amplitude of the two depend on the time-scale of dephasing within the sample. For 

electronic transitions in which dephasing is typically much faster than the radiative lifetime, 

spontaneous emission is the dominant emission process. For the case of vibrational transitions 
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where non-radiative relaxation is typically a picoseconds process and radiative relaxation is a μs 

or longer process, spontaneous emission is not observed. 

The description of coherent nonlinear spectroscopies is rooted in the calculation of the 

polarization, P . The polarization is a macroscopic collective dipole moment per unit volume, 

and for a molecular system is expressed as a sum over the displacement of all charges for all 

molecules being interrogated by the light 

Sum over molecules: ( ) = μ δ r − R )	 (10.1)P r ∑ m ( m 
m 

Sum over charges on molecules: μm ≡∑qmα (rmα − Rm )	 (10.2) 
α 

In coherent spectroscopies, the input fields E  act to create a macroscopic, coherently oscillating 

charge distribution 

P (ω) = χ  ω  E ( ) (10.3) 

as dictated by the susceptibility of the sample.  The polarization acts as a source to radiate a new 

electromagnetic field, which we term the signal Esig . (Remember that an accelerated charge 

radiates an electric field.) In the electric dipole approximation, the polarization is one term in the 

current and charge densities that you put into Maxwell’s equations.  

From our earlier description of freely propagating electromagnetic waves, the wave 

equation for a transverse, plane wave was 

( )  , −
∂2 ( , ) 0 ,∇2E r t	 1 E r t 

= (10.4)
c2 ∂t 2 

which gave a solution for a sinusoidal oscillating field with frequency ω propagating in the 

direction of the wavevector k. In the present case, the polarization acts as a source −an 

accelerated charge− and we can write 

2 1 ∂2E r t( , ) 4π ∂2P (r t, )
∇ E r t, − =	 (10.5)( )  

c2 ∂t 2 c2 ∂t 2 

The polarization can be described by solutions of the form 

P r t( )  , = P t  ( )exp  (ik′ ⋅  −  iωsig t ) + . .  sig r  c c 	 (10.6) 

As we will discuss further later, the wavevector and frequency of the polarization depend on the 

frequency and wave vector of incident fields.   
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ksig =∑±kn (10.7) 
n 

ωsig =∑±ωn . (10.8) 
n 

These relationships enforce momentum and energy conservation for the problem. The oscillating 

polarization radiates a coherent signal field, Esig , in a wave vector matched direction ksig . 

Although a single dipole radiates as a sin θ field distribution relative to the displacement of the 

charge,1 for an ensemble of dipoles that have been coherently driven by external fields, P is 

given by (10.6) and the radiation of the ensemble only constructively adds along ksig . For the 

radiated field we obtain 

Esig (r t  , ) = Esig (r t  , )exp  (i k sig ⋅r − iωsig t ) + c c  .  .  (10.9) 

This solution comes from solving (10.5) for a thin sample of length l, for which the radiated 

signal amplitude grows and becomes directional as it propagates through the sample.  The 

emitted signal   

s kl ⎞ ΔE ( )t = i 2πω lP  t  ( )sinc⎛ Δ ei kl  / 2  (10.10)sig nc ⎝
⎜ 2 ⎠⎟ 

Here we note the oscillating polarization is proportional to the signal field, although there is a 

π/2 phase shift between the two, Esig ∝ i P , because in the sample the polarization is related to the 

gradient of the field.  Δk is the wave-vector mismatch between the wavevector of the polarization 

ks′ig and the radiated field ksig , which we will discuss more later. 

For the purpose of our work, we obtain the polarization from the expectation value of the 

dipole operator 

P t ( )⇒ μ ( )  t  (10.11) 

The treatment we will use for the spectroscopy is semi-classical, and follows the formalism that 

was popularized by Mukamel.2 As before our Hamiltonian can generally be written as 

= 0 +V (t )H H  (10.12) 

where the material system is described by H0 and treated quantum mechanically, and the 

electromagnetic fields V(t) are treated classically and take the standard form 

V t( ) = μ E− ⋅  (10.13) 
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The fields only act to drive transitions between quantum states of the system. We take the 

interaction with the fields to be sufficiently weak that we can treat the problem with perturbation 

theory. Thus, nth-order perturbation theory will be used to describe the nonlinear signal derived 

from interacting with n electromagnetic fields. 

Linear absorption spectroscopy 
Absorption is the simplest example of a coherent spectroscopy. In the semi-classical picture, the 

polarization induced by the electromagnetic field radiates a signal field that is out-of-phase with 

the transmitted light. To describe this, all of the relevant information is in R ( )t  or χ ( )ω . 

P t( ) = ∫
∞ 
τ R ( ) ( −τd τ E t  ) (10.14)

0 

P (ω) = χ ω( )E (ω) (10.15) 

Let’s begin with a frequency-domain description of the absorption spectrum, which we 

previously found was proportional to the imaginary part of the susceptibility, χ′′ . 3  We consider 

one monochromatic field incident on the sample that resonantly drives dipoles in the sample to 

create a polarization, which subsequently re-radiate a signal field (free induction decay). For one 

input field, the energy and momentum 

conservation conditions dictate that ωin =ωsig 

and kin = ksig , that is a signal field of the same 

frequency propagates in the direction of the 

transmitted excitation field. 

In practice, an absorption spectrum is measured by characterizing the frequency-

dependent transmission decrease on adding the sample A = − log Iout Iin . For the perturbative 

case, let’s take the change of intensity δ I = Iin − Iout to be small, so that A ≈ δ I  and Iin ≈ Iout . 

Then we can write the measured intensity after the sample as 
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2 2 
= = E iPIout Eout + Esig out + ( )  

2 2 = Eout + iχEin ≈ Ein + iχEin (10.16)
22= 1+ i (χ′ + iχ′′)Ein 

= I − χ′′+K ⇒ I = I −δ Iin (1 2  ) out in 

Here we have made use of the assumption that >> χ . We see that as a result of the phaseEin

shift between the polarization and the radiated field that the absorbance is proportional to χ′′ : 

δ I = 2χ′′ Iin . 

A time-domain approach to absorption draws on eq. (10.14) and should recover the 

relationships to the dipole autocorrelation function that we discussed previously. Equating 

P t ( ) with ( ) , we can calculate the polarization in the density matrix picture asμ t 

P t( ) =Tr (μI ( ) ρ( ) ( )) (10.17)t I 
1 t 

where the first-order expansion of the density matrix is 
1 t

ρI 
( ) = −  

h 

i 
∫−∞ 

dt1 ⎣⎡VI ( )t1 , ρeq ⎦⎤ . (10.18) 

Substituting eq. (10.13) we find 

P t( ) =Tr ⎛⎜ μI ( )t 
i t

dt′ ⎡−μI ( )  ( )t′ E t′ , ρeq ⎤
⎞
⎟∫−∞ ⎣ ⎦⎝ h ⎠ 

−i t 
= ∫−∞ 

dt E t( )Tr (μ ( ) ⎡⎣μI t , ⎦ (10.19)′ ′ I t ( )′ ρeq ⎤ ) . 
h 

= +
i 
∫0 

∞ 
τ ( −τ )Tr (⎡⎣ I ( ) , I ( )0 ⎤⎦ ρeq )d E t  μ τ μ 

h 

In the last line, we switched variables to the time interval τ t t= − ′ , and made use of the identity 

[B C]⎤ ⎡ = [ , ],C⎤ . Now comparing to eq. (10.14), we see, as expected⎡A, ,  A B⎣ ⎦ ⎣ ⎦

R ( ) = 
i θ τ( )  ⎡⎣ ( ) , I ( )0 ⎤⎦ ρeq ) (10.20)τ Tr ( μ τ μI
h

So the linear response function is the sum of two correlation functions, or more precisely, the 

imaginary part of the dipole correlation function. 

τ i 
− * ( ))R ( ) = θ τ( )  ( )  (C τ C τ (10.21)

h
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C(τ ) = Tr ( I ( ) I (0) ρeq  )μ τ μ  

C ( ) =Tr ( ( )  
(10.22)

* μ  τ ρ  μ  0τ I  eq  I  ( )) 
Also, as we would expect, when we use an impulsive driving potential to induce a free induction 

decay, i.e., E t( −τ ) = E0δ (t −τ ) , the polarization is directly proportional to the response 

function, which can be Fourier transformed to obtain the absorption lineshape. 

Nonlinear Polarization 
For nonlinear spectroscopy, we will calculate the polarization arising from interactions with 

multiple fields. We will use a perturbative expansion of P  in powers of the incoming fields   

P t ( ) = P(0) + P(1) + P(2) + P(3) +L  (10.23) 

where P(n)  refers to the polarization arising from n incident light fields. So, P(2)  and higher are 

the nonlinear terms.  We calculate P  from the density matrix 

P t ( ) =Tr  (μ ( ) ρ (t ))tI I 

=Tr μ ρ +Tr μ ρ t +Tr μ ρ 2 t +K( ( )0 ) ( ( )1 ( )) ( ( ) ( )) (10.24) 
I I I I I I 

As we wrote earlier, ρI 
(n) is the nth order expansion of the density matrix 

0ρ( ) = ρeq 

ρ( ) = −
i t

dt ⎡V ( )t , ρ ⎤ (10.25)I 
1 

h ∫−∞ 1 ⎣ I 1 eq  ⎦ 

t t2 ⎛ρI 
( ) = −⎜

⎝ h

i ⎞
⎟
⎠ 

2 

∫−∞ 
dt2 ∫−∞ 

2 dt1 ⎡⎣VI ( )t2 , ⎡⎣VI ( )  t1 , ρeq  ⎦⎤⎤⎦ 

( )  ⎛ i ⎞
n

n 2 ⎡ ⎡ ⎡ ⎤⎤⎤ρ = −
t

dt 
t

dt 
t

dt V ( )t , V ( )  t , K, ⎡V ( )  , ρ ⎤K . (10.26)I
n 

⎜
⎝ h ⎟⎠ ∫−∞ n ∫−∞ n−1 K∫−∞ 1 ⎣ I n ⎣ I n−1 ⎣ ⎣ I t1 eq  ⎦ ⎦⎦⎦ 

Let’s examine the second-order polarization in order to describe the nonlinear response 

function. Earlier we stated that we could write the second-order nonlinear response arise from 

two time-ordered interactions with external potentials in the form 

( ) ( )
∞ ∞ 2P 2 t = dτ dτ R( ) (τ  τ  , )E (t −τ −τ )E (t −τ ) (10.27)∫ 2 ∫ 1 2 1 1 2 1 2 20 0 
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2 2We can compare this result to what we obtain from P( ) ( ) =Tr  (μ t ρ tt ( ) ( ) ( )) . Substituting as I I 

we did in the linear case,  

( )2 ( )  ⎨
⎧ 

t ⎛ i ⎞
2 

t t2 ⎡ ( )  ⎬
⎪⎫


P t =Tr  ⎪μI ( )⎜
⎝
− 
h ⎟⎠ ∫−∞ 

dt  2 ∫−∞ 
dt  1 ⎣VI ( )t2 , ⎡⎣VI t1 , ρeq  ⎤⎦⎤⎦
⎪⎩ ⎪⎭ 

i 2 
t⎛ ⎞  t 2 = ⎜ ⎟  dt2 dt E 2 ( )  ( )  2 E t1 Tr{ ⎡μ ( )  ( )  t , μI t ,μ t1 ⎤ ρeq  ∫−∞ ∫−∞ 1 t 1 ⎡⎣⎣ I 2 ⎤⎦ I ( )⎦ } (10.28)

h⎝ ⎠  

⎛ ⎞i 2 

∫0 

∞
d ∫0

∞
τ1 E (t −τ 2 ) (  E t τ τ  2 Tr  ⎣⎡⎣ I ( 1 + , μ τ  1 ⎤⎦ , μI ( )  ⎦ ρ }= ⎜ ⎟  τ 2 d 2 1 − −  1 ) {⎡ μ τ  τ  2 )  ( )  I 0 ⎤ eq  

⎝ ⎠h 

In the last line we switched variables to the time-intervals t1 t τ1 τ 2 and t2 = −t τ 2 , and= − −

enforced the time-ordering t1 ≤ t2 . Comparison of eqs. (10.27) and (10.28) allows us to state that 

the second order nonlinear response function is 

R( )2 (τ ,τ ) = 
i 2 

( ) (  )  ⎡⎡μ τ  τ  )  ( )  , μ (10.29)⎛ ⎞ θ τ  θ τ  Tr  ( + , μ τ  ⎤ ( )  0 ⎤ ρ1 2 ⎜ ⎟  1 2 {⎣⎣ I 1 2 I 1 ⎦ I ⎦ eq  }
h⎝ ⎠

Again, for impulsive interactions, i.e. delta function light pulses, the nonlinear polarization is 

directly proportional to the response function.  

Similar exercises to the linear and second order response can be used to show that the 

nonlinear response function to arbitrary order R(n) is 

n i( ) (τ τ1, ,K ) = ⎛ ⎞
n 

θ τ θ τ  ( ) (  )  1 θ τ  nR 2 τ n ⎜ ⎟ 2 K ( )  
h⎝ ⎠  (10.30) 

Tr ⎡⎣⎡⎣K μ τ  τ  K τ  μ τ  , τ Lτ ,K ⎤⎦ μ 0 ⎤⎦ ρ× { ⎡⎣ I ( n + n−1 + + 1 ) (  I n−1 + +n 1 )⎤⎦ I ( )  eq  } 
We see that in general the nonlinear response functions are sums of correlation functions, and the 

nth order response has 2n  correlation functions contributing. These correlation functions differ 

by whether sequential operators act on the bra or ket side of ρ  when enforcing the time-

ordering. Since the bra and ket sides represent conjugate wavefunctions, these correlation 

functions will contain coherences with differing phase relationships during subsequent time-

intervals. 
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To see more specifically what a specific term in these nested commutators refers to, let’s 

look at R(2)  and enforce the time-ordering: 

Term 1 in eq. (10.29): 

Q Tr  = μ τ  τ  μ τ μ  I ( 1 )  ( )  1 I ( ) ρ )1	 ( + 2 I 0 eq 


( † ( + U † τ μ  ( ) ρ )
= Tr	 U (τ +τ μ) U τ  τ  )  ( )  U τ μ0 1 2 0 1 2 0 1 0 1 eq 

U † ( )  ( )  U0
† τ 0 ( )ττ	 U0 1 2 2


† †
= Tr ( μ U0 ( )  U0 ( )  τ  μ ρ  1 U τ1 U0 τ 2τ μ 	 0 ( )  ( )  )2	 eq 

(1) dipole acts on ket of ρeq 

(2) evolve under H0 during τ1. 
(3) dipole acts on ket. 
(4) Evolve during τ2. 
(5) Multiply by μ and take 

trace. 

KET/KET interaction 

At each point of interaction with the external potential, the dipole operator acted on ket side of 

ρ . Different correlation functions are distinguished by the order that they act on bra or ket. We 

only count the interactions with the incident fields, and the convention is that the final operator 

that we use prior to the trace acts on the ket side. So the term Q1 is a ket/ket interaction. 

An alternate way of expressing this correlation function is in terms of the time-propagator 

ˆfor the density matrix, a superoperator defined through: G t( ) ρab =U0 a b U0
† . 	Remembering 

the time-ordering, this allows Q1 to be written as 

Q Tr  = ( Ĝ( )  ( )  Ĝ ρ ) .μ τ μ  τ μ 	 (10.31)1 2 1 eq 

Term 2: 

2 = Tr  ( I 0 μ τ  τ μ τ ρ  Q μ ( )  (  I 1 + ) I ( 1 ) )2 eq 


μ τ  τ  μ τ ρ μ  I ( )  0 )
=Tr ( I ( 1 + )  ( )  1 eq  2 I 

BRA/KET interaction 

For the remaining terms we note that the bra side interaction is the complex conjugate of ket 

side, so of the four terms in eq. (10.29), we can identify only two independent terms: 
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1 ⇒ ket / ket Q1
* ⇒ bra / bra Q ⇒ / 2

* = bra / ket .Q	 2 ket bra Q 

1This is a general observation. For R(n) , you really only need to calculate 2n−  correlation 

functions. So for R(2) we write 

2 iR( ) = ⎛ ⎞
2 

θ ( ) ( )  τ θ τ  
2	

⎡Q (τ τ  , ) −Q* (τ τ  , )⎤ (10.32)⎜ ⎟  1 2 ∑⎣ α	 1 2 α 1 2 ⎦h⎝ ⎠  α=1 

where 
Q Tr  = ⎡μ (τ τ  μ τ μ  ) (	 ) (0) ρ (10.33)1 ⎣ I 1 + 2 I 1 I  eq  ⎦⎤ 

Tr  μ τ μ τ  τ μ  0 .Q2 = ⎣⎡ I ( 1 ) I ( 1 +	 2 ) I ( ) ρeq  ⎦⎤ (10.34) 

So what is the difference in these correlation functions?  Once there is more than one 

excitation field, and more than one time period during which coherences can evolve, then one 

must start to carefully watch the relative phase that coherences acquire during different 

consecutive time-periods, ( ) = ω τ  φ τ ab . To illustrate, consider wavepacket evolution: light 

interaction can impart positive or negative momentum ( ±kin ) to the evolution of the wavepacket, 

which influences the direction of propagation and the phase of motion relative to other states. 

Any subsequent field that acts on this state must account for time-dependent overlap of these 

wavepackets with other target states. The different terms in the nonlinear response function 

account for all of the permutations of interactions and the phase acquired by these coherences 

involved. The sum describes the evolution including possible interference effects between 

different interaction pathways. 

Third-Order Response 
Since R(2) orientationally averages to zero for isotropic systems, the third-order nonlinear 

response described the most widely used class of nonlinear spectroscopies.  

( )3 (τ τ τ  2 
i 3

3 1 μ τ τ  τ  μ τ τ  2 I 1 ) 1 μI ( )  0 ⎤ ρ (10.35)R , ,  = ⎛ ⎞ θ τ  θ τ  θ τ  Tr  ⎡ + +  , + ⎤ , μ τ  ⎤ ,1 3 ) ⎜ ⎟  ( ) ( ) ( )  2 {⎣ I ( 1 3 ) (  2 ⎦ I ( )  ⎦ ⎦ eq  }
h⎝ ⎠

( ) (τ τ τ  ⎛ ⎞
3	 4 

⎡ (τ τ τ  * ( , ,R 3 , , ) = 
i θ τ θ τ θ τ  ( ) ( ) ( )  R , ,  ) − R τ τ τ  )⎤ (10.36)1 2 3 ⎜ ⎟  3 2 1 ∑⎣ α 3 2 1 α 3 2 1 ⎦h⎝ ⎠ 	 α=1 

Here the convention 	for the time-ordered interactions with the density matrix is 

bra ket bra R /R1 = ket / ket / ket ; R2 = / / ; 3 = bra bra / ket ; and R4 ⇒ ket / bra / bra . In the 
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eigenstate representation, the individual correlation functions can be explicitly written in terms 

of a sum over all possible intermediate states (a,b,c,d): 

R1 = ∑ pa μ τ τ  τ μ τ τ μ τ μ  ( + + ) ( + ) ( ) (0)ad 1 2 3 dc 1 2 cb 1 ba 
, , ,a b c d  

R2 = ∑ pa μ τ τ μ τ τ  τ μ τ  μ ( )  (  0 + )  (  + + )  ( )  ad dc 1 2 cb 1 2 3 ba 1 
, , ,a b c d  

(10.37) 

R3 = ∑ pa μ ( )  ( )  (  μ τ μ τ τ  τ μ τ τ  )  (  +0 + +  )ad dc 1 cb 1 2 3 ba 1 2 
, , ,a b c d  

R4 = ∑ pa μ τ μ τ τ μ τ τ  τ μ  ( ) (  ) (  + +  0+ ) ( )  ad 1 dc 1 2 cb 1 2 3 ba 
, , ,a b c d  

Summary: General Expressions for nth Order Nonlinearity 
For an nth-order nonlinear signal, there are n interactions with the incident electric field or fields 

that give rise to the radiated signal.  Counting the radiated signal there are n+1 fields involved 

(n+1 light-matter interactions), so that nth order spectroscopy is also at times referred to as (n+1)-

wave mixing.  

The radiated nonlinear signal field is proportional to the nonlinear polarization: 

nP( )n ( )t = ∫0 

∞
dτ nL∫0

∞
τ1 

( ) (τ τ  1 2 τ n )E t  1 ( τ n L τ1 )LE  t  n −τ n )d R  , ,K − − −  ( (10.38) 

n τ τ, ,Kτ ) = i θ τ θ τ  ( ) (  )  θ τ  R( ) ( ⎛ ⎞
n 

K ( )  1 2 n ⎜ ⎟ 1 2 n
h⎝ ⎠  (10.39) 

×Tr{⎣⎡⎣⎡ ⎡⎣μ (τ +τ +K + )  (  , +τ +Lτ )⎤⎦ ,K ⎤⎦ μ ( )  ⎤
⎦ ρ }K τ  μ τ  0I n n−1 1 I n−1 n 1 I eq 

Here the interactions of the light and 

matter are expressed in terms of a 

sequence of consecutive time-

intervals τ1Kτ n  prior to observing 

the system. For delta-function 

interactions, Ei (t t0 =− ) δ (t − t0 ) ,Ei 

the polarization and response function are directly proportional 
(n) ( ) = R(n) (τ τ K , t )P t , ,  E1 L E . (10.40)1 2 τ n−1 n 
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1. 	 The radiation pattern in the far field for the electric field emitted by a dipole aligned along 
the z axis is 

( , ,θ φ, t ) = − p k 2 sinθ sin  ( ⋅  −  ωt )E r  0 k r  . 
4πε0 r 

(written in spherical coordinates). See Jackson, Classical Electrodynamics. 

2. 	 S. Mukamel, Principles of Nonlinear Optical Spectroscopy. (Oxford University Press, New 
York, 1995). 

3. 	Remember the following relationships of the susceptibility with the complex dielectric 
constant ε ω , the index of refraction n ω , and the absorption coefficient κ ω :( ) ( ) ( )

ε (ω) 1 4  χ (ω)= + π

ε ω = n% ω = n ω + iκ ω  ( )  ( ) ( )  ( )  


