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10.2. DIAGRAMMATIC PERTURBATION THEORY 

In practice, the nonlinear response functions as written above provide little insight into what the 

molecular origin of particular nonlinear signals is. These multiply nested terms are difficult to 

understand when faced the numerous light-matter interactions, which can take on huge range of 

permutations when performing experiments on a system with multiple quantum states. The 

different terms in the response function can lead to an array of different nonlinear signals that 

vary not only microscopically by the time-evolution of the molecular system, but also differ 

macroscopically in terms of the frequency and wavevector of the emitted radiation.   

Diagrammatic perturbation theory (DPT) is a simplified way of keeping track of the 

contributions to a particular nonlinear signal given a particular set of states in H0 that are probed 

in an experiment.  It uses a series of simple diagrams to represent the evolution of the density 

matrix for H0, showing repeated interaction of ρ with the fields followed by time-propagation 

under H0 . From a practical sense, DPT allows us to interpret the microscopic origin of a signal 

with a particular frequency and wavevector of detection, given the specifics of the quantum 

system we are studying and the details of the incident radiation.  It provides a shorthand form of 

the correlation functions contributing to a particular nonlinear signal, which can be used to 

understand the microscopic information content of particular experiments. It is also a 

bookkeeping method that allows us to keep track of the contributions of the incident fields to the 

frequency and wavevector of the nonlinear polarization. 

There are two types of diagrams we will discuss, Feynman and ladder diagrams, each of 

which has certain advantages and disadvantages. For both types of diagrams, the first step in 

drawing a diagram is to identify the states of H0 that will be interrogated by the light-fields. The 

diagrams show an explicit series of absorption or stimulated emission events induced by the 

incident fields which appear as action of the dipole operator on the bra or ket side of the density 

matrix. They also symbolize the coherence or population state in which the density matrix 

evolves during a given time interval. The trace taken at the end following the action of the final 

dipole operator, i.e. the signal emission, is represented by a final wavy line connecting dipole 

coupled states. 
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Feynman Diagrams1 

Feynman diagrams are the easiest way of tracking the state of coherences in different time 

periods, and for noting absorption and emission events.   

1. Double line represents ket and bra side of ρ . 

2. 	 Time-evolution is upward. 

3. 	Lines intersecting diagram represent field 

interaction. Absorption is designated through an 

inward pointing arrow. Emission is an outward 

pointing arrow.  Action on the left line is action 

on the ket, whereas the right line is bra. 

4. 	System evolves freely under H0 between 

interactions, and density matrix element for that 

period is often explicitly written. 

Ladder Diagrams2 

Ladder diagrams are helpful for describing experiments on multistate systems and/or with 

multiple frequencies; however, it is difficult to immediately see the state of the system during a 

given time interval. They naturally lend themselves to a description of interactions in terms of 

the eigenstates of H0. 

1. 	 Multiple states arranged vertically by energy. 

2. 	 Time propagates to right. 

3. 	Arrows connecting levels indicate resonant 

interactions. Absorption is an upward arrow and 

emission is downward.  A solid line is used to 

indicate action on the ket, whereas a dotted line 

is action on the bra. 

4. 	 Free propagation under H0 between interactions, 

but the state of the density matrix is not always 

obvious. 
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For each light-matter interactions represented in a diagram, there is an understanding of 

how this action contributes to the response function and the final nonlinear polarization state. 

Each light-matter interaction acts on one side of ρ , either through absorption or stimulated 

emission. Each interaction adds a dipole matrix element μij that describes the interaction 

amplitude and any orientational effects.3 Each interaction adds input electric field factors to the 

polarization, which are used to describe the frequency and wavevector of the radiated signal. The 

action of the final dipole operator must return you to a diagonal element to contribute to the 

signal. Remember that action on the bra is the complex conjugate of ket and absorption is 

complex conjugate of stimulated emission.  A table summarizing these interactions contributing 

to a diagram is below. 

Interaction 
Diagrammatic 

Representation ( )R n 

contrib. 
to 

contribution 
to 

k sig & sig ω 

KET SIDE 

( ) exp ba n n nE  ik  r  i  tμ ω⎡ ⎤⋅ ⎣ ⋅ −  ⎦ 

Absorption 

a 

b 

a 

b 

nE 
ba n ˆμ ⋅ε  n+ + ωnk 

( * ) expba n n nE  ik  r  i  tμ ω⎡ ⎤⋅  −  ⋅ +  ⎣ ⎦ 

Stimulated Emission a 

ba 

b * 
nE 

ba n ˆμ ⋅ε  n− − ωnk 

BRA SIDE 

( )* * 
ba n n nE exp  ik  r  i  t⎡ ⎤μ ⋅  −  ⋅ + ω⎣ ⎦ 

Absorption 

a 

b 

a 

b 

* 
nE 

* 
ba n ˆμ ⋅ε  n− − ωnk 

( )* 
ba n n nE exp  ik  r  i  t⎡ ⎤μ ⋅  ⋅ − ω⎣ ⎦ 

Stimulated Emission a 

ba 

b nE 
* 
ba n ˆμ ⋅ε  n+ + ωnk 

SIGNAL EMISSION: 
(Final trace, 
convention: ket side) 

a 

ba 

b 

ba an ˆμ ⋅ε  
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Once you have written down the relevant diagrams, being careful to identify all permutations of 

interactions of your system states with the fields relevant to your signal, the correlation functions 

contributing to the material response and the frequency and wavevector of the signal field can be 

readily obtained. It is convenient to write the correlation function as a product of several factors 

for each event during the series of interactions:  

1) Start with a factor pn signifying the probability of occupying the initial state, typically a 

Boltzmann factor.  

2) Read off products of transition dipole moments for interactions with the incident fields, 

and for the final signal emission. 

3) Multiply by terms that describe the propagation under H0  between interactions. 

As a starting point for understanding an experiment, it is valuable to include the effects of 

relaxation of the system eigenstates in the time-evolution using a simple 

phenomenological approach. Coherences and populations are propagated by assigning the 

damping constant Γab  to propagation of the ρab  element: 

Ĝ ( )τ ρ = exp [− ω τ  − Γ τ ρ  . (10.1)ab i ab ab ] ab 

Note ab Γ  and G* = Gba . We can then recognize ΓΓ = ba ab ii =1 T 1 as the population 

relaxation rate for state i and Γij =1 T2  the dephasing rate for the coherence ρij . 

4) Multiply by a factor of ( )−1 n where n is the number of bra side interactions.  This factor 

accounts for the fact that in evaluating the nested commutator, some correlation functions 

are subtracted from others.   

5) The radiated signal will have frequency ωsig = ∑ωi and wave vector ksig = ∑ ki 
i i 

Example: Linear Response for a Two-Level System 
Let’s consider the diagrammatic approach to the linear absorption problem, using a two-level 

system with a lower level a and upper level b. There is only one independent correlation 

function in the linear response function, 
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C t( ) = Tr  ⎡⎣μ (t ) μ (0) ρeq ⎤⎦ 

⎣ 
ˆ ( )  eq ⎦

 (10.2) 
= Tr ⎡μ G t μ ρ  ⎤ 

This does not need to be known before starting, but is useful to consider, since it should be 

recovered in the end. The system will be taken to start in the ground state ρaa. Linear response 

only allows for one input field interaction, which must be absorption, and which we take to be a 

ket side interaction. We can now draw two diagrams: 

(4) Act on ket with μ and take 
trace. 

(3) Propagate under H0: 
G	 ( )τ = e−iωbaτ −Γ  ba τ .ab 

(2) Act on ket with μ(0) to 
create ρba. 

(1) Start in ρaa  (add factor of 
pa when reading). 

With this diagram, we can begin by describing the signal characteristics in terms of the induced 

polarization. The product of incident fields indicates:   

1 
− ω +ik  ⋅r ⇒ P ( )e−iωsigt+ik sig r	 (10.3)E e i t1 1 t ⋅ 

so that ωsig = ω1 ksig = k . 	(10.4) 

As expected the signal will radiate with the same frequency and in the same direction as the 

incoming beam.  Next we can write down the correlation function for this term.  Working from 

bottom up: 

(1) (2) (3) (4) 

( )  [ ]  ba  
−iωbat−Γ  bat [ ]C t  = pa μ ⎡⎣e ⎤⎦ μab 	 (10.5) 

2 −iωbat−Γ  bat= pa eμba  

More sophisticated ways of treating the time-evolution under H0 in step (3) could take the form 

of some of our earlier treatments of the absorption lineshape: 
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G τ ρ	 ~ ρ exp −iω τ  F τ 

= ρ  exp ⎡−iω  τ  − g t  ( )⎤ 

ˆ ( )  ab ab [ ab ] ( )	
(10.6) 

ab ⎣ ab ⎦

Note that one could draw four possible permutations of the linear diagram when 

considering bra and ket side interactions, and initial population in states a and b: 

However, there is no new dynamical content in these extra diagrams, and they are generally 

taken to be understood through one diagram. Diagram ii is just the complex conjugate of eq. 

(10.5) so adding this signal contribution gives: 

C t( ) − C*( )t = 2i p  2 sin(  ωba  t) e−Γbat . 	(10.7)a μba  

Accounting for the thermally excited population initially in b leads to the expected two-level 

system response function that depends on the population difference 

R t( ) = 
2 ( pa − pb ) 

2 sin(ωbat)e−Γbat . 	(10.8)μba
h 

Example: Second-Order Response for a Three-Level System 
The second-order response is the simplest nonlinear case, but in molecular spectroscopy is less 

commonly used than third-order measurements. The signal generation 

requires a lack of inversion symmetry, which makes it useful for studies of 

interfaces and chiral systems. However, let’s show how one would 

diagrammatically evaluate the second order response for a very specific 

system pictured at right. If we only have population in the ground state at 

equilibrium and if there are only resonant interactions allowed, the 

permutations of unique diagrams are as follows: 
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From the frequency conservation conditions, it should be clear that process i is a sum-frequency 

signal for the incident fields, whereas diagrams ii-iv refer to difference frequency schemes. To 

better interpret what these diagrams refer to let’s look at iii.  Reading in a time-ordered manner, 

we can write the correlation function corresponding to this diagram as 

C = Tr  ⎡μ τ ρ μ  0 ⎤2 ⎣ ( ) eq ( )⎦ 

= −1 1 μ Ĝ τ μ  Ĝ τ  ρ μ  ∗ . (10.9)( )  bc cb ( )  ca ab ( )  aa ba2 1

= − p μ μ μ  e−iω τ −Γ τ e−iω τ  −Γ τab 1 ab 1 cb 2 cb 2 
a ab  bc  ca  

Note that a literal interpretation of the final trace in diagram iv would imply 

an absorption event – an upward transition from b to c. What does this have to do 

with radiating a signal?  On the one hand it is important to remember that a diagram 

is just mathematical shorthand, and that one can’t distinguish absorption and 

emission in the final action of the dipole operator prior to taking a trace.  The other 

thing to remember is that such a diagram always has a complex conjugate associated 

with it in the response function. The complex conjugate of iv, a Q2
∗ ket/bra term, 

shown at right has a downward transition –emission– as the final interaction. The 

combination Q2 − Q2 
∗  ultimately describes the observable. 
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Now, consider the wavevector matching conditions for the second order signal iii. 

Remembering that the magnitude of the wavevector is k = ω c = 2π λ , the length of the vectors 

will be scaled by the resonance frequencies. When the two incident fields are crossed as a slight 

angle, the signal would be phase-matched such that the signal is radiated closest to beam 2. Note 

that the most efficient wavevector matching here would be when fields 1 and 2 are collinear. 
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Third-Order Nonlinear Spectroscopy 

Now let’s look at examples of diagrammatic perturbation theory applied to third-order nonlinear 

spectroscopy. Third-order nonlinearities describe the majority of coherent nonlinear experiments 

that are used including pump-probe experiments, transient gratings, photon echoes, coherent 

anti-Stokes Raman spectroscopy (CARS), and degenerate four wave mixing (4WM). These 

experiments are described by some or all of the eight correlation functions contributing to R(3) : 

iR( )3 = ⎛ ⎞
3 4 

⎡R R− * ⎤ (10.10)⎜ ⎟ ∑⎣ α α ⎦h⎝ ⎠ α =1 

The diagrams and corresponding response first requires that we specify the system 

eigenstates.  The simplest case, which allows us discuss a number of examples of third-order 

spectroscopy is a two-level system. Let’s write out the diagrams and correlation functions for a 

two-level system starting in ρaa , where the dipole operator couples b and a . 

R1 

ket/ket/ket 

E3

E2

a a  

b a  

E1

b 

a 

b a  

a a  

τ3

τ2 

τ1 

R2 R3 R4 

bra/ket/bra bra/bra/ket ket/bra/bra 

b b  

b a  

a a  

b a  

b b  

b a  

a b  

a a  

a b  

a a  

b a  

a a  

+ −  +  ω ω ω ω ω ω ω ω ω  ω ω ω− + +  − + +  + − +  1 2 3 1 2 3 1 2 3 1 2 3 

k  k k k k k k k k k  k k k= + − +  − + +  − + +  + − +  sig 1 2 3 1 2 3 1 2 3 1 2 3
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As an example, let’s write out the correlation function for R2 obtained from the diagram 

above. This term is important for understanding photon echo experiments and contributes to 

pump-probe and degenerate four-wave mixing experiments.  
2 * ⎡ −iω τab 1 −Γabτ1 ⎤ −iω τbb 2 −Γbbτ2 * −iω τ −Γ τ⎡ ba 3 ba 3 ⎤R2 = −( )1 pa (  )  μba  e (  )  μba  (e )(μab ) e (  )  μab 

(10.11)⎣ ⎦ ⎣ ⎦ 
4 =  exp ⎣−i ba ( 3 − 1 ) − Γ τ  τ  1 + ) − Γbb τ 2 ⎦⎡ ω τ  τ  ba ( 3 ( )⎤pa μab  

The diagrams show how the input field contributions dictate the signal field frequency and wave-

vector. Recognizing the dependence of E (3) ~ P(3) ~ R  E E E  , these are obtained from the ( 1 3 )sig 2 2 

product of the incident field contributions  
ω 1 +i t−ik  3+ 1 −ik  ⋅r −i 2t+ik ⋅r 3 3 ⋅r* i t  ω 2 ωE E E = (E e )(E e )(E e )1 2 3 1  2 3  

(10.12) 
* −ω t ik  ⇒ E E E e  sig + sig ⋅r 
1 2 3 

ω = −ω ω  ω  +∴ sig 2 1 + 2 3 
. (10.13)

= − +  +  ksig 2 k1 k2 k3 

Now, let’s compare this to the response obtained from R4 . These we obtain 

4
R4 = pa
 exp ⎡− ω τ  τ  ( + ) − Γ τ τ  )i ( + − Γ ( )  τ ⎤ (10.14)μab  ⎣ ba  3 1 ba  1 3 bb  2 ⎦

ω = +ω ω  ω  − +sig 4 1 2 3 
(10.15)

= + −  +ksig 4 k1 k2 k3 

Note that R2 and R4 terms are identical, except for the phase acquired during the initial period: 

exp[iφ] = exp [±iω τ ] . The R  term evolves in conjugate coherences during the τ1 and τ3ba 1 2

periods, whereas the R4  term evolves in the same coherence state during both periods: 

Coherences in 1τ and 3τ Phase acquired in 1τ and 3τ 

4R b a  → b a  ( )1 3baie ω τ τ− + 

2R a b  → b a  ( )1 3baie ω τ τ− − 

The R2  term has the property of time-reversal: the phase acquired during τ1 is reversed in τ3. For 

that reason the term is called “rephasing.”  Rephasing signals are selected in photon echo 

experiments and are used to distinguish line broadening mechanisms and study spectral 

diffusion. For R4 , the phase acquired continuously in τ1 and τ3, and this term is called “non­
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rephasing.” Analysis of R1  and R3  reveals that these terms are non-rephasing and rephasing, 

respectively. 
−iωbaτ3e non-rephasing φ 

−iω τe ba 1 

+iω τe ba 3 

0 
τ3 rephasing τ1

ph
as

e 
ac

qu
ire

d

( )P t  

t1 t2t3 
t 

For the present case of a third-order spectroscopy applied to a two-level system, we 

observe that the two rephasing functions R2 and R3  have the same emission frequency and 

wavevector, and would therefore both contribute equally to a given detection geometry.  The two 

terms differ in which population state they propagate during the τ2 variable. Similarly, the non­

rephasing functions R1  and R4  each have the same emission frequency and wavevector, but differ 

by the τ2 population. For transitions between more than two system states, these terms could be 

separated by frequency or wavevector (see appendix). Since the rephasing pair R2  and R3  both 

contribute equally to a signal scattered in the −k + + kk  direction, they are also referred to as 1 2 3 

SI. The nonrephasing pair R  and R  both scatter in the + − + kk k  direction and are labeled as1 4 1 2 3 

SII. 

Our findings for the four independent correlation functions are summarized below.   

sigω sigk τ2 population 

SI rephasing 2R 1 2 3ω ω  ω  − + + 1 2 3k k k− +  +  excited state 

3R 1 2 3ω ω  ω  − + + 1 2 3k k k− +  +  ground state 

SII non-rephasing 1R 1 2 3ω ω  ω  + − + 1 2 3k k  k+ − +  ground state 

4R 1 2 3ω ω  ω  + − + 1 2 3k k  k+ − +  excited state 
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Frequency Domain Representation4 

A Fourier-Laplace transform of P(3) (t )  with respect to the time intervals allows us to obtain an 

expression for the third order nonlinear susceptibility, (3) ( , ,χ ω ω ω ) :1 2 3 

P(3) (  )  ω = (3) ( ; ,χ  ω  ω ω ω  , ) E E E (10.16)sig sig 1 2 3 1 2 3 

n n  1 1where χ ( )n = ∫0 

∞
d eiΩ τ 

0

∞
d e R( ) ( , ,Kτ τ iΩ τ n τ τ  τ ) . (10.17)n L∫ 1 1 2 n 

Here the Fourier transform conjugate variables Ωm  to the time-interval τ m  are the sum over all 

frequencies for the incident field interactions up to the period for which you are evolving:  
m 

Ω = ω (10.18)m ∑ i 
i=1 

For instance, the conjugate variable for the third time-interval of a +k k− + k  experiment is the 1 2 3 

Ω − +  .sum over the three preceding incident frequencies = ω ω  ω  3 1 2 3 

 In general, χ(3) is a sum over many correlation functions and includes a sum over states: 

1 i 3
4( )3 , ,  = ⎛ ⎞  p ⎡ * (10.19)χ (ω ω ω  1 2 3 ) ⎜ ⎟ ∑ a ∑ ⎣χ  χ  α − α ⎦⎤ 

⎝ ⎠ =6 h abcd α 1 

Here a is the initial state and the sum is over all possible intermediate states.  Also, to describe 

frequency domain experiments, we have to permute over all possible time orderings. Most 

generally, the eight terms in R(3)  lead to 48 terms for χ (3) , as a result of the 3!=6 permutations 

of the time-ordering of the input fields.5 

Given a set of diagrams, we can write the nonlinear susceptibility directly as follows: 

1) Read off products of light-matter interaction factors. 

2) Multiply by resonance denominator terms that describe the propagation under H0 . In the 

frequency domain, if we apply eq. (10.17) to response functions that use 

phenomenological time-propagators of the form eq. (10.1), we obtain 

Ĝ ( )τ ρ  ⇒
(Ωm −ω 

1 

ba  ) − iΓba  

. (10.20)m  ab  

Ωm is defined in eq. (10.18). 
3) As for the time domain, multiply by a factor of ( ) for n bra side interactions. −1 n 

4) The radiated signal will have frequency ωsig = ∑ωi and wavevector ksig = ∑ki . 
i i 
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As an example, consider the term for R2  applied to a two-level system that we wrote in 

the time domain in eq. (10.11) 

(−1)
⋅ 

1 
⋅ 

(−1)4χ2 = μba − −  − + −  − Γ(  )  ω − (ω ω  −  −) iΓ ω − (ω ω ω  ) iωab ω1 iΓab bb 2 1 bb ba 3 2 1 ba (10.21) 
4 1 1 1 

= μba ω ω  iΓ − (ω ω  ) iΓ − ω ω ω ω  +  − −  ) − iΓ− − − − (1 ba ba 2 1 bb 3 2 1 ba ba 

The terms are written from a diagram with each interaction and propagation adding a resonant 

denominator term (here reading left to right). The full frequency domain response is a sum over 

multiple terms like these.   
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Appendix: Third-order diagrams for a four-level system 
The third order response function can describe interaction with up to four eigenstates of the 

system Hamiltonian. These are examples of correlation functions within R(3) for a four-level 

system representative of vibronic transitions accompanying an electronic excitation, as relevant 

to resonance Raman spectroscopy. Note that these diagrams present only one example of 

multiple permutations that must be considered given a particular time-sequence of incident fields 

that may have variable frequency. 

R1 R2 R3 R4


ket / ket / ket bra/ket/bra bra/bra/ket ket/bra/bra


E3


E2


E1

b a  

a a  

c a  

d a  

1τ 

2τ 

3τ 

a b  

a a  

d b  

d c  

a b  

a a  

a c  

d c  

b a  

a a  

b b  

b a  

a 

b 
c 

d 

a 

b 
c 

d 

a 

b 
c 

d 

a 

b 
c 

d 

* * * * * *μ μ μ μ  μ μ μ μ  μ μ μ μ  μ μ μ μ  ba cb dc ad ba da cb cd ba cb da cd ba da cd cb 

ω  ω ω ω  + − +ω ω ω  ω ω ω  + + −ω ω ω  = + −  + − +  +sig 1 2 3 1 2 3 1 2 3 1 2 3 

= ω +ω +ω = ω −ω +ω −ω = ω −ω −ω  ω  + =ω ω −ω −ω = ωba cb dc da ba da cb dc ba cb da dc ba da cd bc 

The signal frequency comes from summing all incident resonance frequencies accounting for the 

sign of the excitation. The products of transition matrix elements are written in a time-ordered 

fashion without the projection onto the incident field polarization needed to properly account for 

orientational effects. The R1 term is more properly written (μ ε  μ ε  ⋅ ˆ ⋅ ˆ ⋅ ˆ ⋅ ˆμ ε  μ ε  .ba 1 )( cb 2 )( dc 3 )( ad an ) 

Note that the product of transition dipole matrix elements obtained from the sequence of 

interactions can always be re-written in the cyclically invariant form μ μ μ μ . This is oneab bc cd da 

further manifestation of closed loops formed by the sequence of interactions. 
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Appendix: Third-order diagrams for a vibration 
The third-order nonlinear response functions for infrared vibrational spectroscopy are often 

applied to a weakly anharmonic vibration.  For high frequency vibrations in which only the v = 0 

state is initially populated, when the incident fields are resonant with the fundamental vibrational 

transition, we generally consider diagrams involving the system eigenstates v = 0, 1 and 2, and 

which include v=0-1 and v=1-2 resonances. Then, there are three distinct signal contributions: 

Signal sigk Diagrams and Transition Dipole Scaling R/NR 

SI 1 2 3k k k− +  +  

4 
10μ 

4 
10μ 

2 2 
10 21μ μ 

rephasing 

SII 1 2 3k k  k+ −  +  

4 
10μ 

4 
10μ 

2 2 
10 21μ μ 

non-rephasing 

SIII 1 2 3k k k+ +  −  

2 2 
10 21μ μ 

2 2 
10 21μ μ 

non-rephasing 



2μ 
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Note that for the SI and SII signals there are two types of contributions: two diagrams in which all 

interactions are with the v=0-1 transition (fundamental) and one diagram in which there are two 

interactions with v=0-1 and two with v=1-2 (the overtone).  These two types of contributions 

have opposite signs, which can be seen by counting the number of bra side interactions, and have 

emission frequencies of ω10 or ω21. Therefore, for harmonic oscillators, which have ω10 = ω21 

= μ , we can see that the signal contributions should destructively interfere and and 10 21 

vanish. This is a manifestation of the finding that harmonic systems display no nonlinear 

response. Some deviation from harmonic behavior is required to observe a signal, such as 

vibrational anharmonicity ω10 ≠ ω21, electrical anharmonicity 2μ10 ≠ μ21 , or level-dependent 

damping Γ10 ≠ Γ21 or Γ00 ≠ Γ11 . 
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