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10.3. THIRD-ORDER NONLINEAR SPECTROSCOPIES 

Third-order nonlinear spectroscopies are the most widely used class of nonlinear methods, 

including the common pump-probe experiment.  This section will discuss a number of these 

methods. The approach here is meant to be practical, with the emphasis on trying to connect the 

particular signals with their microscopic origin. This approach can be used for describing any 

experiment in terms of the wave-vector, frequency and time-ordering of the input fields, and the 

frequency and wavevector of the signal. 

Selecting signals by wavevector 

The question that arises is how to select particular contributions to the signal. Generally, 

it will not be possible to uniquely select particular diagrams. However you can use the properties 

of the incident and detected fields to help with selectivity. Here is a strategy for describing a 

particular experiment: 

1) Start with the wavevector and frequency of the signal field of interest.   

2) (a) Time-domain: Define a time-ordering along the incident wavevectors or 

(b) Frequency domain: Define the frequencies along the incident wavevectors. 

3)	 Sum up diagrams for correlation functions that will scatter into the wave-vector matched 

direction, keeping only resonant terms (rotating wave approximation).  In the frequency 

domain, use ladder diagrams to determine which correlation functions yield signals that 

pass through your filter/monochromator.   

Let’s start by discussing how one can distinguish a rephasing signal from a non-rephasing 

signal. Consider two degenerate third-order experiments (ω1 = ω2 = ω3 = ωsig) which are 

distinguished by the signal wave-vector for a particular time-ordering. We choose a box 

geometry, where the three incident 

fields (a,b,c) are crossed in the 

sample, incident from three corners 

of the box, as shown. (Note that the 

color in these figures is not meant 
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same – but rather is just there to distinguish them for the picture).  Since the frequencies are the 

same, the length of the wavevector k = 2π n λ is equal for each field, only its direction varies. 

Vector addition of the contributing terms from the incident fields indicates that the signal 

ksig = +ka − kb + kc will be radiated in the direction of the last corner of the box when observed 

after the sample. (The colors in the figure do not represent frequency, but just serve to 

distinguish the beams). 

Now, comparing the wavevector matching condition for this signal with those predicted 

by the third-order Feynman diagrams, we see that we can select non-rephasing signals R1  and R4

by setting the time ordering of pulses such that a = 1, b = 2, and c = 3. The rephasing signals 

R2 and R3  are selected with the time-ordering a = 2, b = 1, and c = 3. 

Alternatively, we can recognize that both signals can be observed by simultaneously 

detecting signals in two different directions.  If we set the time ordering to be a = 1, b = 2, and 

c = 3, then the rephasing and non-rephasing signals will be radiated as shown below: 
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In this case the wave-vector matching for the rephasing signal is imperfect. The vector sum of 

the incident fields ksig dictates the direction of propagation of the radiated signal (momentum 

conservation), whereas the magnitude of the signal wavevector ks′ ig is dictated by the radiated 

frequency (energy conservation). The efficiency of radiating the signal field falls of with the 

wave-vector mismatch k k − k′ ∝ P t( )sinc (Δkl  2) where l is the path lengthEsig (t )Δ =  sig sig , as 

(see eq. 1.10). 
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Photon Echo 
The photon echo experiment is most commonly used to distinguish static and dynamic line-

broadening, and time-scales for energy gap fluctuations.  The rephasing character of R2 and R3 

allows you to separate homogeneous and inhomogeneous broadening.  To demonstrate this let’s 

describe a photon echo experiment for an inhomogeneous 

lineshape, that is a convolution of a homogeneous line shape 

with width Γ with a static inhomogeneous distribution of 

width Δ. Remember that linear spectroscopy cannot 

distinguish the two: 
2 e−iω τ −g (τ ) − c c. .  (10.1)abR ( )τ = μab 

For an inhomogeneous distribution, we could average the homogeneous response, g t( ) = Γbat , 

with an inhomogeneous distribution 

R = ∫ dωab G (ωab ) R (ωab ) (10.2) 

which we take to be Gaussian 
ω 

G (  )  ωba = exp ⎜
⎛

−
(ωba − 

2 
ba )2 

⎟
⎞ 

. (10.3)
⎜ 2Δ ⎟
⎝ ⎠ 

Equivalently, since a convolution in the frequency domain is a product in the time domain, we 

can set 
1 2 2g t( ) = Γ  t + Δ  t . (10.4)ba 2 

So for the case that Δ > Γ , the absorption spectrum is a broad Gaussian lineshape centered at the 

mean frequency  which just reflects the static distribution Δ rather than the dynamics in Γ.ωba

Now look at the experiment in which two pulses are crossed to generate a signal in the 

direction 

ksig = 2k2 − k1 (10.5) 

This signal is a special case of the signal (k3 k2 1 )+ − k  where the second and third interactions 

are both derived from the same beam. Both non-rephasing diagrams contribute here, but since 

both second and third interactions are coincident, τ 2 = 0 and R2 = R3. The nonlinear signal can 

be obtained by integrating the homogeneous response,  
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Two-pulse photon echo 

4 −iω (τ τ3 ) −Γab 1 + 3 )R 3 ωab = pa e ab 1− e (τ  τ  (10.6)( ) (  )  μab 

over the inhomogeneous distribution as in eq. (10.2). This leads to  

4 −i ωab (τ τ ) e−Γ (τ τ+ ) e−(τ τ  − )2 2 

(10.7)3R( ) = 1− 3 ab 1 3 1 3 Δ /2pa eμab 

− −For Δ > R( )3  is sharply peaked at τ , i.e. e ( 1 3 ) ≈ δ τ τ )> Γ  ab , τ1 = 3 
τ τ  

2 Δ2 /2 ( 1 − 3 . The broad 

distribution of frequencies rapidly dephases 

during τ1, but is rephased (or refocused) 

during τ3, leading to a large constructive 

enhancement of the polarization at 

τ1=τ3. This rephasing enhancement is called 

an echo. 

In practice, the signal is observed with a integrating intensity-level detector placed into 

the signal scattering direction. For a given pulse separation τ (setting τ1=τ), we calculated the 

integrated signal intensity radiated from the sample during τ3 as 
22 ∞ 3 (10.8)Isig ( )τ = ∝ ∫−∞ 

dτ 3 P( ) (τ τ  , 3 )Esig 

In the inhomogeneous limit ( Δ >> Γ  ab ), we find 

8I τ ∝ e −4Γabτ . (10.9)sig ( )  μab 

In this case, the only source of relaxation of the polarization amplitude at τ1 = τ3 is Γab . At this 

point inhomogeneity is removed and only the homogeneous dephasing is measured. The factor of 

four in the decay rate reflects the fact that damping of the initial coherence evolves over two 

periods τ1 + τ3 = 2τ, and that an intensity level measurement doubles the decay rate of the 

polarization. 
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Transient Grating 
The transient grating is a third-order technique used for characterizing numerous relaxation 

processes, but is uniquely suited for looking at optical excitations with well-defined spatial 

period. The first two pulses are set time-coincident, so you cannot distinguish which field 

interacts first.  Therefore, the 

signal will have contributions 

both from ksig = −k1 k2 + k3 

and ksig = −k1 + k2 + k3 . That 

is the signal depends on 

R1+R2+R3+R4. 

Consider the terms contributing to the polarization that arise from the first two 

interactions. For two time-coincident pulses of the same frequency, the first two fields have an 

excitation profile in the sample  

E E = E E  exp ⎡−i ω −ω t + i k − k ⋅ r ⎤ + c c  . . (10.10)a b a b ⎣ ( a b ) ( a b ) ⎦

If the beams are crossed at an angle 2θ 

k = k ( ẑ cosθ + x̂ sin θ )a a 

kb = ( ẑ cos θ − x̂ sin θ ) 
(10.11)

kb 

with 
2π nk = = , (10.12)a kb λ 

the excitation of the sample is a spatial varying interference pattern along the transverse direction  
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E E  exp ⎣i β ⋅  +x . . E E = ⎡ ⎤ c c  (10.13)a b a b ⎦

The grating wavevector is 
β k k = −1 2 

4π n 2π . (10.14)
β = sin θ = 

λ η 

This spatially varying field pattern is called a grating, and has a fringe spacing 

λη = . (10.15)
2 sinθn 

Absorption images this pattern into the sample, creating a spatial pattern of excited and ground 

state molecules. A time-delayed probe beam can scatter off this grating, where the wavevector 

matching conditions are equivalent to the constructive interference of scattered waves at the 

Bragg angle off a diffraction grating. For ω ω  ω ω  this the diffraction condition is= = =1 2 3 sig 

incidence of k3  at an angle θ, leading to scattering of a signal out of the sample at an angle −θ. 

Most commonly, we measure the intensity of the scattered light, as given in eq. (10.8). 

More generally, we should think of excitation with this pulse pair leading to a periodic 

spatial variation of the complex index of refraction of the medium.  Absorption can create an 

excited state grating, whereas subsequent relaxation can lead to heating a periodic temperature 

profile (a thermal grating).  Nonresonant scattering processes (Raleigh and Brillouin scattering) 

can create a spatial modulation in the real index or refraction. Thus, the transient grating signal 

will be sensitive to any processes which act to wash out the spatial modulation of the grating 

pattern: 

• Population relaxation leads to a decrease in the grating amplitude, observed as a decrease 

in diffraction efficiency. 

Isig (τ ) ∝ exp[−2Γbb τ ]  (10.16) 
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•	 Thermal or mass diffusion along x̂  acts to wash out the fringe pattern.  For a diffusion 

constant D the decay of diffraction efficiency is 

Isig (τ ) ∝ exp ⎡⎣ 2β τ ⎤⎦  (10.17)− 2D 

•	 Rapid heating by the excitation pulses can launch counter propagating acoustic waves 

along x̂ , which can modulate the diffracted beam at a frequency dictated by the period 

for which sound propagates over the fringe spacing in the sample. 
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Pump-Probe 
The pump-probe or transient absorption experiment is perhaps the most widely used third-order 

nonlinear experiment. It can be used to follow many types of time-dependent relaxation 

processes and chemical dynamics, and is most commonly used to follow population relaxation, 

chemical kinetics, or wavepacket dynamics and quantum beats.  

The principle is quite simple, and the using the theoretical formalism of nonlinear 

spectroscopy often unnecessary to interpret the experiment. Two pulses separated by a delay τ 

are crossed in a sample: a pump pulse and a time-delayed probe pulse. The pump pulse Epu 

creates a non-equilibrium state, and the time-dependent changes in the sample are characterized 

by the probe-pulse Epr  through the pump-induced intensity change on the transmitted probe, ΔI. 

Described as a third-order coherent nonlinear spectroscopy, the signal is radiated 

collinear to the transmitted probe field, so the wavevector matching condition is 

ksig = +kpu − kpu + kpr = kpr . There are two interactions with the pump field and the third 

interaction is with the probe. Similar to the transient grating, the time-ordering of pump-

interactions cannot be distinguished, so terms that contribute to scattering along the probe are 

ksig = ±k1 m k2 + k3 , i.e. all correlation functions R1  to R4 . In fact, the pump-probe can be thought 

of as the limit of the transient grating experiment in the limit of zero grating wavevector (θ and β 

→ 0). 

The detector observes the intensity of the transmitted probe and nonlinear signal 

2
I = 

nc . (10.18)E′ pr + Esig 4π 
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E′pr  is the transmitted probe field corrected for linear propagation through the sample. The 

measured signal is typically the differential intensity on the probe field with and without the 

pump field present: 

2 2
Δ τ 

ncI ( )  = { E′ pr + Esig ( )τ E′ } . (10.19)− pr 4π 

E′ >>If we work under conditions of a weak signal relative to the transmitted probe , thenpr Esig 

the differential intensity in eq. (10.19) is dominated by the cross term 

ΔI ( )  ≈ nc ⎡ ′ pr 
∗ ( )  + c c  τ E Esig τ . .  ⎤ 

4π ⎣ ⎦ 
. (10.20)

nc ∗ = 
2π

Re ⎣⎡E E′ pr sig ( ) ⎦τ ⎤ 

So the pump-probe signal is directly proportional to the nonlinear response. Since the signal field 

is related to the nonlinear polarization through a π/2 phase shift, 

sig ( )τ = i 
2πωsig l P(3) ( )E τ . (10.21)

nc 

the measured pump-probe signal is proportional to the imaginary part of the polarization 

τ ω ⎡
⎣ pr 

( )3 ( )⎤⎦ ,ΔI ( )  = 2 sig l Im  E′ P τ (10.22) 

which is also proportional to the correlation functions derived from the resonant diagrams we 

considered earlier. 

Dichroic and Birefringent Response 

In analogy to what we observed earlier for linear spectroscopy, the nonlinear changes in 

absorption of the transmitted probe field are related to the imaginary part of the susceptibility, or 

the imaginary part of the index of refraction. In addition to the fully resonant processes, it is also 

possible for the pump field to induce nonresonant changes to the polarization that modulate the 

real part of the index of refraction. These can be described through a variety of nonresonant 

interactions, such as nonresonant Raman, the optical Kerr effect, coherent Raleigh or Brillouin 

scattering, or the second hyperpolarizability of the sample. In this case, we can describe the time-

development of the polarization and radiated signal field as  

P ( ,τ τ3) = P(3) τ τ3 )e −i sig 3 + ⎣P τ τ3 )⎦
∗ ω τ3 

(10.23) 
(3) ( ,  ω τ  ⎡ (3) ( ,  ⎤ ei sig 

⎣ ( ,  τ τ3 ⎦ ω τ  sig 3 + 2Im P τ τ  )⎦ sin(  sig 3 )= 2Re  ⎡P(3) )⎤ cos(  )  ⎣⎡ (3) ( ,  3 ⎤ ω τ  
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3 3(τ ) = 
4πωsig l Re  P( ) ( ,  ⎤ ω τ  ) + Im  ( ) ( ,  ⎤ ω τ  )Esig 3 nc ( ⎡

⎣ τ τ 3)⎦ sin(  sig 3 
⎡
⎣P τ τ3 )⎦ cos(  sig 3 ) (10.24) 

= E ( ,τ τ  ) sin(  ω τ  E ( ,  ω τ )bir 3 sig 3 ) + dic τ τ  3) cos(  sig 3 

Here the signal is expressed as a sum of two contributions, referred to as the birefringent (Ebir) 

and dichroic (Edic) responses. As before the imaginary part, or dichroic response, describes the 

sample-induced amplitude variation in the signal field, whereas the birefringent response 

corresponds to the real part of the nonlinear polarization and represents the phase-shift or 

retardance of the signal field induced by the sample.  

In this scheme, the transmitted probe is 

E′ ( )  = E ( )cos(  (10.25)τ ′ τ  ω τ  ) ,pr 3 pr 3 pr 3 

So that the 

Δ 
2 
nc 
π ⎣ pr τ dic ( )⎦I ( )τ ≈ ⎡E′ ( )E τ ⎤ (10.26) 

Because the signal is in-quadrature with the polarization (π/2 phase shift), the absorptive or 

dichroic response is in-phase with the transmitted probe, whereas the birefringent part is not 

observed. If we allow for the phase of the probe field to be controlled, for instance through a 

quarter-wave plate before the sample, then we can write  

E′ pr ( , )  τ3 ϕ = E′ pr (τ3) cos(  ω τ  pr 3 +ϕ) , (10.27) 

I ( ,  )  ≈ 
2 
nc 
π ⎣ ′ pr ( )  Ebir τ ϕ + ′ pr ( )Edic τ ϕ ⎤⎦τ ϕ ⎡E τ (  ) sin(  )  E τ ( ) cos(  )  (10.28) 

The birefringent and dichroic response of the molecular system can now be observed for phases 

of φ = π/2, 3π/2… and φ = 0, π… , respectively. 

Incoherent pump-probe experiments 

What information does the pump-probe experiment contain?  Since the time delay we 

control is the second time interval τ2, the diagrams for a two level system indicate that these 

measure population relaxation: 

Δ τ 
4 e−Γbbτ (10.29)I ( ) ∝ μab 

In fact measuring population changes and relaxation are the most common use of this 

experiment.  When dephasing is very rapid, the pump-probe can be interpreted as an incoherent 
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experiment, and the differential intensity (or absorption) change is proportional to the change of 

population of the states observed by the probe field. The pump-induced population changes in 

the probe states can be described by rate equations that describe the population relaxation, 

redistribution, or chemical kinetics.   

For the case where the pump and probe frequencies are the same, the signal decays as a 

results of population relaxation of the initially excited state. The two-level system diagrams 

indicate that the evolution in τ2 is differentiated by evolution in the ground or excited state. 

These diagrams reflect the equal signal contributions from the ground state bleach (loss of 

ground state population) and stimulated emission from the excited state. For direct relaxation 

from excited to ground state the loss of population in the excited state Γbb is the same as the 

refilling of the hole in the ground state Γaa, so that Γaa = Γbb. If population relaxation from the 

excited state is through an intermediate, then the pump-probe decay will reflect equal 

contributions from both processes, which can be described by coupled first-order rate equations.  

When the resonance frequencies of the pump and probe fields are different, then the 

incoherent pump-probe signal is related to the joint probability of exciting the system at ωpu 

and detecting at ωpr  after waiting a time τ ( pr , ;  pu ) ., P ω τ ω  

Coherent pump-probe experiments 

Ultrafast pump-probe measurements on the time-scale of vibrational dephasing operate in 

a coherent regime where wavepackets prepared by the pump-pulse modulate the probe intensity. 

This provides a mechanism for studying the dynamics of 

excited electronic states with coupled vibrations and 

photoinitiated chemical reaction dynamics. If we consider 

the case of pump-probe experiments on electronic states 

where ωpu = ωpr , our description of the pump-probe from 

Feynmann diagrams indicates that the pump-pulse creates 

excitations both on the excited state and ground state. 

Both wavepackets will contribute to the signal. 

There are two equivalent ways of describing the experiment, which mirror our earlier 

description of electronic spectroscopy for an electronic transition coupled to nuclear motion. 
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,e nThe first is to describe the spectroscopy in terms of the eigenstates of H0, . The second 

draws on the energy gap Hamiltonian to describe the spectroscopy as two electronic levels HS 

that interact with the vibrational degrees of freedom HB, and the wavepacket dynamics are 

captured by HSB. 

For the eigenstate description, a two level system is inadequate to capture the wavepacket 

dynamics.  Instead, describe the spectroscopy in terms of the four-level system diagrams given 

earlier. In addition to the population relaxation terms, we see that the R2 and R4 terms describe 

the evolution of coherences in the excited electronic state, whereas the R1 and R3 terms describe 

the ground state wave packet. For an underdamped wavepacket these coherences are observed as 

quantum beats on the pump-probe signal. 

R1 R2

E3 τ2
E2

a a  

d b  
Quantum Beats 

E1 ΔI ( )τ 
d d 
b b 2 

c c 
a a


−iω τ −Γ τ −iω τ −Γ τ
e ca 2 ca 2 e db 2 db 2 τ 

Population 
Relaxation 

e−Γbbτ 

a a  

c a  
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CARS (Coherent Anti-Stokes Raman Scattering) 

Used to drive ground state vibrations with optical pulses or cw fields. 

•	 Two fields, with a frequency difference equal to a vibrational transition energy, are used 

to excite the vibration.   

•	 The first field is the “pump” and the second is the “Stokes” field.   

•	 A second interaction with the pump frequency lead to a signal that radiates at the anti-

Stokes frequency: ωsig = 2ωP −ωS  and the signal is observed background-free next to the 

transmitted pump field: ksig = 2kP − kS . 

The experiment is described by R1 to R4, and the polarization is 

3R( ) = μ μ  e−iωegτ −Γegτ μ μ  + c c. .ev′ v g ′ gv ve


−iω τ −Γ τ
= α e eg eg α + c c. .eg ge 

The CARS experiment is similar to a linear experiment in which the lineshape is determined by 

the Fourier transform of C τ = α τ α  . 

The same processes contribute to Optical Kerr Effect Experiments and Impulsive Stimulated 

Raman Scattering. 

( )  ( )  (0) 


