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Lecture #1: Matrices are Useful in Spectroscopic Theory
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For next time, read handout on the Van Vleck transformation and look at the notes on coupled harmonic

oscillators.

Qutline

Correspondences

bra row  column
v, — i) :[ } N x 1 column vector
ket
v, —(il= 1 x N row vector
operator 0-0 N X N square matrix

similarity transformation T'"H’T = H" that “diagonalizes” H;

Usual procedure to obtain a fit model.

exact H a
differential
operator

a complete
set of basis
functions

>

e.g. Born-
Oppenheimer
and normal
mode
separations
of variables

exact H

an infinite
matrix
expressed
in terms of
structure
[parameters
e.g. f;; force
constants

Matrix representation of arbitrary f(Q).

The {E,} are the H}, in the special “diagonal” representation of ﬁ;

truncate H

P
Van Vleck

transformation
2
introduces
many small
terms

Approximate H

a finite matrix
expressed in
terms of
microscopic
molecula
constants

Solution of Schrodinger Equation corresponds to solving a determinantal secular equation for the

{E}

The {y,} are obtained from the basis states {¢, } as columns of the unitary matrix T from the

not necessarily
the same even
if they have
same name

perturbation |Fit model
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* finite
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matrix
combine OR
linearly * algebraic
dependent  fformulas
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effective
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Matrices are useful because:

* they display all necessary information;
3 ” : LN : 113 . 9 .t Hi‘
* can be “read” and simplified by perturbation theory “order sorting” via e
E’-E°¢
i i
* labor saving tricks for avoiding the evaluation of unnecessary integrals, such as formulas

for all matrix elements of (3 and P in the Harmonic Oscillator basis set.
No integrals actually evaluated.
No functions actually looked at.

Quantum Mechanics Operators follow the rules of matrix multiplication.

eg. [y (AB)ydr=Y, (J \Vfgﬂfkdf)(f \p;f%\pjdr)
k

completeness

of {y}

= Z AikBkj = (AB)ij
k

This is very useful because we can generate many matrices by simple operations on one matrix.

E.g. Q=R-R,
V@) =) cQ
n
matrix of Q" Q)=(Q" OQxQx..Q

so instead of evaluating Q', Q% Q’, etc. we just evaluate Q and derive all the rest by matrix operations.
T formulas, not integrals]

* shortcuts to selection rules

There is even some diagrammatic insight {* calculations of a specific element of Q
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Av = +1 non-zero matrix elements of Q

Av =0, £2 selection rules

At the end of this lecture we will see that we are
not restricted to integer powers of Q.

etc.

Suppose we have a convenient and complete (orthonormal) basis set {¢;}.

Any arbitrary function (including an eigenfunction of ﬁ) can be expanded in terms of the {¢}.

wavefunction picture

| 4— canbe oo
Wi :z a:(q)i N)?Wkdr = a:(

matrix picture
Y=Ub U is a transformation that converts {0} into {y}.

0 0
Wk %lk)\y = 1 q)i %|l>¢ — 1
0 y 0

*

Wk%\uq(l:\uw Nx1 ‘
column matrix
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N

We know y, =Y ak¢,

i=1
We want ¥ = U@ where U is N x N matrix that transforms ¢ into ¥.

(0) /Ukl\ (0 ) (0 )
: 0 U,
Wk: 1 :z Ukiq)i: E + E +..

\O Ny \O )_qgh r W\(f)U Jo \UkN Jo
0) /1k1\ e

O Uiy
Uy = a? = Jq)i\deT

We can go in the opposite direction
Uly=9¢
and show that U™ = U" U;'=U;
¢ is the i-th row of U™ or the i-th column of U*.
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Derivation of Secular Determinant

Now for every operator there is a matrix representation.

R O11 OlN
0-50°=| : :
Oy - O

0,=] 6,00t

Schrédinger Equation in y eigenbasis picture

Hy, =Evy,
/ mixing coefficient

o0 basis function - convenient
_ Ky —
Yy = 2 a; 0;

1=1

usually defined as
eigenfunctions of a part

of H called H°
H°0, =E;0,

Matrix notation:
HY = | o/Hodr=(ilHlj),
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/Hi)l H?N\ (af\ (alf\
qu’l : _E, .

k k

H? a a

\ NI | Jo \°N /o \N o
convenient nitially unknown |

initially unknown

re(presentation mixiglg coefficients .
energies

2 H o«
i

2 H2i ai(
LHS =| 4 E,

Z HNi ai(

move everything into one column matrix

H.a"-§ E, a*
Z, ( 114 1B ) Zai( (Hn _611Ek) 0
i 0
Y (H,af -8,E,af) |= etc. = .
etc. 0

A system of N linear homogeneous equations in N unknowns (af i=1.. .N) . A nontrivial solution

exists if the determinant of coefficients of the unknown {a'} is zero.

H, -E, H,, --H,y | unit matrix
0=| H,, H,,-E, = [H*-1E,
HNN _Ek

Page 6
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This is the secular determinant. Must solve for special values of E, which satisfy the requirement
0=H’-1E,.

These are eigenvalues of ﬁ {E,} k=1,2,...N

COMPUTERS!
1. start with complete set {0}
2 compute all H’matrix elements
3. “diagonalize” H? time required o< N°
4 solve for {al'}: one set of N coefficients for each of the N eigenvalues.

How to “diagonalize” H*? Seek a similarity transformation T.
T'H'T=H’= C HZ

Hiy
H! =E, are the eigenvalues we seek.

Computer generates T iteratively (Jacobi Rotations, see handout)

Special properties:

*

eigenvalues) which means that their matrix representations have the property
0=0' O;= O;

* T is “unitary”
’ TT=1 (e, T' =T

all Quantum Mechanical operators (that correspond to real observables) are “Hermitian” (real
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Now I’ll show that T contains the information we seek about the {aX}.
0 0

T'HT = H* where HY|1 | =E, |1

Vi

T?Hq)T\Vk = Ey,
left multiply by T  TT =1

TT'H’ Ty, =TE, vy,
H(D (TWk) — Ek (TWk) Q}:igenvector of H* |

an eigenvalue eql}ation

0) /le ai{\

Ty =T|1 | =|: =

\O Sy \}rNk Jo \AN Jp

k™ column of T

The columns of T are the eigenvectors of H in the ¢ representation.

0=T"
y =T
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Special example of finding matrix representation of any general function of a matrix.

Suppose we want Q*?

* Generate Q° in the convenient ¢ basis
* diagonalize Q° [not the representation that diagonalizes H]
Q, 0 0
T'Q*T=Q°=| 0 "-. 0
0 0 Q%
3/2
3/2 (Qlel ) O O
= Q@)= 0o 0

0 0 Q)"

* transform back to ¢ basis

T(Q9)3/2T1' — [Q3/2] (]

The only reason why this is not as wonderful and general as it seems is that it is
impossible to diagonalize an infinite matrix and all Harmonic Oscillator basis sets
are infinite. Still, truncation at a finite (large) dimension gives accurate results for
the lowest few eigenstates. Accuracy can be tested by doing calculation twice,
once for N X N and once for (N + 1) X (N + 1) and looking for stability of results
for the lowest levels of interest.



