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Lecture #8: The Born-Oppenheimer Approximation

For atoms we use SCF to define 1e™ orbitals. Get fof (r) for each e in field of e”’s in all other occupied
orbitals.

y(r)= |(]), (1)...05(1y )| single antisymmetrized product function.
This is a way of defining our zero-order complete basis set.

It is a bad approximation and accurate ab initio electronic wavefunctions are CI — linear combination of
many configurations (product functions).

For molecules, we separate ‘¥ (g;R,O,q)) into a product of electronic, vibrational, and rotational
functions @,(r;R)y;,q,|RQITM).

This is the Born-Oppenheimer approximation. It is based on a good approximation (¢ move much
faster than nuclei) and most molecular eigenstates can be well described by single
electronic*vibrational *rotational product.

BUT WHAT DO WE HAVE TO SLIP UNDER THE RUG?

How to separate ﬁ(g,R,G,q)) ? some subtle stuff — return to this for polyatomic molecules

1. CLAMPED NUCLEI
AN 2

T — 0 get electronic @,(r; R) and nuclear V,(R) by neglecting <q)i ‘V ‘QD j> and
(@, ¥lo, ) Vy(®R).

~ ROT-VIB ~ROT ~ VIB

2. For the i-th electronic state, H (R,0,9) separated into H ~ (6,¢)+H (R)

define |QQIM) basis set

neglect part of H*°"
Define V,o(R) = V,(R) + B,(R)[J(J + 1) — Q*] effective potential
Define y;,;o(R) vibrational basis set.

3. EXACT y — use BO y° to go beyond BO approximation, then put the neglected terms back into
H
spectroscopic perturbations
adiabatic vs. diabatic limits (neglect of either V* or electrostatic terms)

Potential Energy Surfaces are the central organizing concept of molecular spectroscopy.

Recipe:

1. write exact H

2. neglect inconvenient terms

3. solve the simplified equation to define a complete basis set
4. put the neglected terms back in.
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~ ~Ae ~N
H=T +T +V N4+V™W v Defined with respect to center of mass. See

[Bunker, J. Mol. Spect. 28, 422 (1968)] for
~e p2 h2 ) neglected e induced center of mass wobble.
T =) _—_ —EV

T 2m, 2m,_ 5

internuclear distance

~ ROT (

A2
T =Pa 1 Po 7' (R0,0)=T R)+H

2mA 2mB orientation of@——w@th
respect to lab XYZ
~ h?
£ dial only KE T" (R)=——— [i(RZ iﬂ
2uR” | dR JdR
~ROT hz ~2
H (R.0,0)=- (n=R’)
nuclear angular momentum
D_T1.7T_4Q __m,myg
|rotational constant hCB(R)| R=J-L-S§ s m, +m,
VCN _ _Z ZA62 ZBCZ
i |ri_RA| |ri_RB|
H_/
RAi RB
VW _ 4 ZaZse
R
ee __ 2 . - . . .
V¥ = +2 e / I spoils le orbital approximation — SCF

i>]

Two coordinate systems

LAB XYZ . .
both have origin at center of mass (definition of body frame becomes more
BODY xyz

complex for polyatomic molecules)
related by 3 Euler angles (need only 2 angles to locate internuclear axis, 3* angle chosen implicitly =
phase convention)

~cel ~ VIB ~ROT

Can we separate H=H +H +H ?
if we could, then E..=T,+G(v)+F,QJ)

lI]evr = |¢1> XL>|QJM>
NOT quite.

e move fast, nuclei slow. Take this to extreme limit and pretend nuclei can be held fixed.
CLAMPED NUCLEI TN — 0
solve clamped nuclei electronic Schrédinger Equation at grid of fixed R : R, R,, ... R,
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H(r:R,)® (r:R,)=E (R,)® (:R,)

~

——
grid
point

1
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Page 3
manifold of
eigenstates, computed
at grid of R, points
R fixed

This defines E;(R) which we call the potential energy function for the i-th electronic state V,(R).

This also defines @, (r; R) a complete set of electronic wavefunctions which depend parametrically on

R.

Next: use E{(R) and @, (g; R) to define a (non-rotating) (Té\l 0 > O) nuclear motion Schrodinger

Equation.

\VF\C/) (I', R) = (I)l (I', R) XlV(R) (no 0,0 dependence)

plug into full Schrédinger Equation, left multiply by @, (r; R) and integrate over all r: denoted as ( ), .

o

TN<1§>+E1<R>

ﬁwBO _ EWBO
ﬁ‘q)iXi v> =E <(I)i
i)nfdrependent

no 6,

T ‘(Di > Xi,\J+ in,v(R) =Ex;,(R)

<(Di
N

(DiXi,V>r
&

=1 independent

came from T¢ + VN + VNN + V* only

Vi(R)

J

eigenvalue equation, ); (R) <> E;,
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Chain rule for V?
V2(AB) = V[ ( VA)B + AVB] = (V’A)B + (VA)(VB) + (VA)(VB) + A(V’B)

Thus

(@

~ R 2
TN‘(I)1>I Xiv = <¢1 TN‘¢1>I Xir T 2 _;l—ﬂ <(b1 (VR¢i)r>VRXi,v

| I
do we expect ¢; to depend on R?

=1

+(9,

—— AN
\ ¢i>rT Xi’\i

-
keep this, neglect the
other two terms

~ VIBR

—

We are left with [TN(R) + ViR) 1., = Ei i (R) nuclear Schrodinger Equation
So are we done yet? Nope. We must reconsider neglected terms from T" including rotation.

The nuclear motion H (R,0,0) is not quite separable into h {(R) + ﬁz(e,q)) (worse for polyatomics)

Another trick is needed to separate out 0,0 degrees of freedom.

otation is tricky here
put this back in 4 2 |: /

H, (R,0,0)=T"(R)+—L#" AzLVi(R)
\2]/tR / nuclear rotation angular

B(R) /momenturn — depends on 0,0
rotational constant BAD NEWS
operator - depends on R

R <> 0,0 coupling, therefore
can't separate!

The trick is to use a standard set of angular momentum basis functions [analogous to the Y," (6,0) of the
central force problem], then define what we have to temporarily throw away so that we can integrate
over 0,0 to get a new and correct rotating molecular Schrédinger Equation.

Define |QJM) basis functions. Eigenfunctions of J,, J*, J,
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They are f(0,0) and describe probability of finding internuclear axis (BODY z axis) pointing in 0,
direction (with respect to lab) given that the magnitude of the angular momentum is [J(J + 1)]"* and that

the projection of JonZisMandonzis Q
1e.

Gz)=—M I|QIM) = 23T +1)|QIM)
DIRECTION COSINES cos A+
cos(J,z) = e — 1,1QIM) = iM|QIM)
[T +1)] 1, 1QIM) = hQIQIM)

J=R+L+S
Total angular momentum is conserved, so it must be true that [ﬁ,j 1=0.

J is a rigorously good quantum number. What about € and M? Why?

~. better to use J 2 than R but J does not appear in H (R, 6,).

We are going to temporarily throw away some stuff. (Some clever algebra needed to reduce R” to this

simple form.)

R=J-L-S
RO = (1= 13)+[(s7 - 82)+ (12 - 13)
2(J, L, +J L) L-uncoupling
2(JXSX +J,S ) S-uncoupling
#2(L,S, +L,S,) |

temporarily get rid of all stuff in [ ]
(P =32)IQM) =7 [JJ +1)- Q]| QIM)

Now we can get rid of 0,¢ part of H (R, 0,0)
Express unknown ; (R, 0,9) as product of radial and angular factors,

Xivrom(®) = (RIIVIQM) and QJM> = (s, )
0.9

%X (R,0,0)= 2 Xiv. J,Q,M(R)|QJM) (usual schizophrenic approach: vibration as wavefunction, rotation

JOM
as state vector).

left multiply Schrodinger Equation expressed in terms of ﬁ(R,G,q)) by (QJM] and integrate over 0,.
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Q’J'M’> - <QJM Y Anor
00

QI'M’

ﬁ(R’e’ q)) 2 Xin’J’M’(R)

QI'M’

<QJ M Ei o

Q/J/Ml>

00

LHS ={T"(R)+ V,(R)+ BR)[JJ+1)-Q*]} | QIM

>

QITM’

Q,JM, XiVQ'J'M'

)

~
orthonormality 00

(All of this comes out of the 0,0 integral because the terms are independent of 0, ¢ or because we used
|Q2JM) basis functions.)

~2
+{ QJM [ neglected stuff from R } 2 QIM ) Yo

QI'M’

some non-zero AQ = +1 matrix elements.
Neglect for now. Perturbations and L,S
uncoupling later!

Simplifies to:

LHS = |TY(R)+ V.(R) + B(R)[J(J +1) - Qz] Xivam

call this V, ;o (R)
“effective potential curve”

RHS = E; ;o Xivam(R)

None of the operators on the LHS depend on M or J,, drop this index. Now at last we have a simple R-
equation.

AN
T (R)+V, ,(R) Xiva = EiwaXiva
,J\/\/J/ J J

different set of vibrational y’s for each J,Q2 (we can
avoid this by Van Vleck transformation, later)
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So we are almost done. We have defined a complete basis set.
Vi (15R,0,0) = @, (1;R)) 50 (R)(60| QM)

* @,(r;R) is an eigenfunction of |ﬁ— r/I\‘N (R,q.f) | ('fN is removed because we clamped the nuclei)

* |QIM) is eigenfunction of J?, J,, J, and approximate eigenfunction of |'fN(R,9,¢) - 'fN(R)|
h2 o ~2 A A~ S A2 A2
= ~h"R =BR)[J-L-S]"=BR)[J -J.]
2uR

* Yive(R) 1s eigenfunction of 'fN(R) +V,o(R)

All we need now is the exact y

mixing coefficient

exact __ o Born-Oppenheimer /
\ljJ o Z \lj ivJQ CiVJQ
1,v,Q

The Born-Oppenheimer approximation is a good approximation when only one term in summation is
important.

IN THIS SPECIAL CASE
EevJ = Ti + Gi(V) + Fi,v(J)

and it is straightforward to go in either direction
EevJ A VIJ(R)
Sometimes a few mixing coefficients are important — must “go beyond the Born-Oppenheimer
approximation” — “PERTURBATIONS” (local vs. global)
Perturbation Theory

The “nominal” k, v, J state is denoted by putting it between ¢ ’

EXACT __ ,,,oBorn-Oppenheimer + H iv'J;kv] oBorn—Oppenheimer
‘kv]’ — kvJ o E 0 \V iv’]
i,v’ kvJ iv’]

Ist order corrections to . If one or more of these correction terms is too large, must diagonalize a
matrix.

What terms in H cause trouble?
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Ve = e’y explicitly included in definition of y°®° which is also called the “adiabatic”
wavefunction. This keeps potential curves for states of same symmetry from crossing.
Non-crossing rule.

TV(R) ignored effect on ®,(1;R)

HROT ignored effects of stuff in [ ]. These effects can be turned off by going to J = 0.

Two convenient limits

1.

Adiabatic or Born-Oppenheimer

define ®!* electronic basis functions by exactly diagonalizing H-T" (R)

treat T"(R) as a perturbation

d
c.g. <\V?O R

avoided crossings R = R,

w?0> # (0 because y’s are R-dependent — especially rapid change near

get non-crossing potential energy curves

DIABATIC &

exclude some undefinable part of V* in order to define “single configuration™ electronic basis
states.

Treat H® (that undefinable part of V*°) as a perturbation
e.g. <d>§i J

~c¢l
because icp‘.i =0 but <q>F‘\H \q>‘.‘> #0
aR J 1 ]

=R <I)?> =0 (we refuse to let ®* depend on R)

get crossing curves

Two limiting cases
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> is very large for R near

i"
R/

Weakly avoided crossing — diabatic basis is preferable because <i

crossing.

~cel
Strongly avoided crossing — adiabatic basis is preferable because <1‘H ‘ j> would be large relative to all

vibrational level spacings.



